所以 --------14分 查看更多

 

題目列表(包括答案和解析)

(14分)袋中有大小相同的小球6個(gè),其中紅球2個(gè),黃球4個(gè),規(guī)定1個(gè)紅球得2分,1個(gè)黃球得1分,從袋中任取3個(gè)球,記所取3個(gè)球的分?jǐn)?shù)之和為,求隨機(jī)變量的分布列和期望以及方差

查看答案和解析>>

( 14分 )已知圓C:x2+y2-2x+4y-4=0,是否存在斜率為1的直線,使以被圓C所截得的弦AB為直徑的圓經(jīng)過(guò)原點(diǎn)?若存在,寫(xiě)出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

(12分)

一緝私艇發(fā)現(xiàn)在北偏東方向,距離12 nmile的海面上有一走私船正以10 nmile/h的速度沿東偏南方向逃竄.緝私艇的速度為14 nmile/h, 若要在最短的時(shí)間內(nèi)追上該走私船,緝私艇應(yīng)沿北偏東的方向去追,.求追上所需的時(shí)間和角的正弦值.

 

 

查看答案和解析>>

(本題14分)閱讀:設(shè)Z點(diǎn)的坐標(biāo)(a, b),r=||,θ是以x軸的非負(fù)半軸為始邊、以OZ所在的射線為終邊的角,復(fù)數(shù)z=a+bi還可以表示為z=r(cosθ+isinθ),這個(gè)表達(dá)式叫做復(fù)數(shù)z的三角形式,其中,r叫做復(fù)數(shù)z的模,當(dāng)r≠0時(shí),θ叫做復(fù)數(shù)z的幅角,復(fù)數(shù)0的幅角是任意的,當(dāng)0≤θ<2π時(shí),θ叫做復(fù)數(shù)z的幅角主值,記作argz

根據(jù)上面所給出的概念,請(qǐng)解決以下問(wèn)題:

(1)設(shè)z=a+bi =r(cosθ+isinθ) (a、bÎR,r≥0),請(qǐng)寫(xiě)出復(fù)數(shù)的三角形式與代數(shù)形式相互之間的轉(zhuǎn)換關(guān)系式;

(2)設(shè)z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2),探索三角形式下的復(fù)數(shù)乘法、除法的運(yùn)算法則,請(qǐng)寫(xiě)出三角形式下的復(fù)數(shù)乘法、除法的運(yùn)算法則.(結(jié)論不需要證明)

查看答案和解析>>

如圖所示,將數(shù)以斜線作如下分群:(1),(2,3),(4,6,5),(8,12,10,7),(16,24,20,14,9),….并順次稱其為第1群,第2群,第3群,第4群,….則第7群中的第2項(xiàng)是:
96
96
;
1 3 5 7 9
2 6 10 14 18
4 12 20 28 36
8 24 40 56 72
16 48 80 112 114
第n群中n個(gè)數(shù)的和是:
3•2n-2n-3
3•2n-2n-3

查看答案和解析>>


同步練習(xí)冊(cè)答案