題目列表(包括答案和解析)
答案:(1)∵四邊形是正方形,∴,且 (2分)
又∵是公共邊,∴△≌△, (2分)
∴∠ =∠ (1分)
(2)聯(lián)結 (1分)
∵,
∴∠ =∠ (1分)
∵∠=∠,∠ =∠,
∴∠=∠.
∵∠+∠=∠+∠,
∴∠=∠ (1分)
∵四邊形是正方形,
∴∠=∠ =45°,∠=∠= 45°,
∴∠=∠ (1分)
∴∠=∠. (1分)
又∵∠是公共角,∴△∽△, (1分)
∴,即 (1分)
【答案】x≥1。
【考點】二次根式有意義的條件.
【專題】存在型.
【分析】先根據(jù)二次根式有意義的條件列出關于x的不等式,求出x的取值范圍即可.
【解答】∵在實數(shù)范圍內有意義,
∴x-1≥0,
解得x≥1.
故答案為:x≥1.
【點評】本題考查的是二次根式有意義的條件,即被開方數(shù)大于等于0.
【答案】1.1×107。
【考點】科學記數(shù)法—表示較大的數(shù).
【分析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).
【解答】將11000000用科學記數(shù)法表示為:1.1×107.
故答案為:1.1×107.
【點評】此題考查了科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.
【答案】60°。
【考點】平行線的性質;三角形的外角性質.
【分析】利用三角形的一個外角等于與它不相鄰的兩個內角的和求出∠3的同位角的度數(shù),再根據(jù)兩直線平行,同位角相等即可求解.
【解答】如圖,∵∠1=130°,∠2=70°,
∴∠4=∠1-∠2=130°-70°=60°,
∵a∥b,
∴∠3=∠4=60°.
故答案為:60°.
【點評】本題考查了平行線的性質,三角形的一個外角等于與它不相鄰的兩個內角的和的性質,準確識圖,理清圖中各角度之間的關系是解題的關鍵.
【答案】π.
【考點】扇形面積的計算;三角形內角和定理.
【分析】根據(jù)三角形內角和定理得到∠B+∠C=180°-∠A=130°,利用半徑相等得到OB=OD,OC=OE,則∠B=∠ODB,∠C=∠OEC,再根據(jù)三角形內角和定理得到∠BOD=180°-2∠B,∠COE=180°-2∠C,則∠BOD+∠COE=360°-2(∠B+∠C)=360°-2×130°=100°,圖中陰影部分由兩個扇形組成,它們的圓心角的和為100°,半徑為3,然后根據(jù)扇形的面積公式計算即可.
【解答】∵∠A=50°,
∴∠B+∠C=180°-∠A=130°,
而OB=OD,OC=OE,
∴∠B=∠ODB,∠C=∠OEC,
∴∠BOD=180°-2∠B,∠COE=180°-2∠C,
∴∠BOD+∠COE=360°-2(∠B+∠C)
=360°-2×130°=100°,
而OB=BC=3,
∴S陰影部分==π.
故答案為π.
【點評】本題考查了扇形面積的計算:扇形的面積=(n為圓心角的度數(shù),R為半徑).也考查了三角形內角和定理.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com