可知= (). 查看更多

 

題目列表(包括答案和解析)

已知函數(shù),
(I)求函數(shù)f(x)的最小正周期;
(II)試用“五點(diǎn)法”做出函數(shù)f(x)在內(nèi)的簡(jiǎn)圖,并指出該函數(shù)可由函數(shù)y=sinx(x∈R)的圖象經(jīng)過(guò)怎樣的先平移后伸縮變換得到.

查看答案和解析>>

(本小題12分)

在某個(gè)以旅游業(yè)為主的地區(qū),每年各個(gè)月份從事旅游服務(wù)工作的人數(shù)會(huì)發(fā)生周期性變化.現(xiàn)假設(shè)該地區(qū)每年各個(gè)月份從事旅游服務(wù)工作的人數(shù)可近似地用函數(shù)來(lái)刻畫(huà).其中:正整數(shù)表示月份且,例如時(shí)表示1月份;是正整數(shù);

統(tǒng)計(jì)發(fā)現(xiàn),該地區(qū)每年各個(gè)月份從事旅游服務(wù)工作的人數(shù)有以下規(guī)律:

①各年相同的月份,該地區(qū)從事旅游服務(wù)工作的人數(shù)基本相同;

②該地區(qū)從事旅游服務(wù)工作的人數(shù)最多的8月份和最少的2月份相差約400人;

③2月份該地區(qū)從事旅游服務(wù)工作的人數(shù)約為100人,隨后逐月遞增直到8月份達(dá)到最多.

(I)試根據(jù)已知信息,確定一個(gè)符合條件的的表達(dá)式;

(II)一般地,當(dāng)該地區(qū)從事旅游服務(wù)工作的人數(shù)超過(guò)400人時(shí),該地區(qū)進(jìn)入了一年中的旅游“旺季”.那么,一年中的哪幾個(gè)月是該地區(qū)的旅游“旺季”?請(qǐng)說(shuō)明理由.

查看答案和解析>>

(本小題12分)
在某個(gè)以旅游業(yè)為主的地區(qū),每年各個(gè)月份從事旅游服務(wù)工作的人數(shù)會(huì)發(fā)生周期性變化.現(xiàn)假設(shè)該地區(qū)每年各個(gè)月份從事旅游服務(wù)工作的人數(shù)可近似地用函數(shù)來(lái)刻畫(huà).其中:正整數(shù)表示月份且,例如時(shí)表示1月份;是正整數(shù);
統(tǒng)計(jì)發(fā)現(xiàn),該地區(qū)每年各個(gè)月份從事旅游服務(wù)工作的人數(shù)有以下規(guī)律:
①各年相同的月份,該地區(qū)從事旅游服務(wù)工作的人數(shù)基本相同;
②該地區(qū)從事旅游服務(wù)工作的人數(shù)最多的8月份和最少的2月份相差約400人;
③2月份該地區(qū)從事旅游服務(wù)工作的人數(shù)約為100人,隨后逐月遞增直到8月份達(dá)到最多.
(I)試根據(jù)已知信息,確定一個(gè)符合條件的的表達(dá)式;
(II)一般地,當(dāng)該地區(qū)從事旅游服務(wù)工作的人數(shù)超過(guò)400人時(shí),該地區(qū)進(jìn)入了一年中的旅游“旺季”.那么,一年中的哪幾個(gè)月是該地區(qū)的旅游“旺季”?請(qǐng)說(shuō)明理由.

查看答案和解析>>

(本小題12分)
在某個(gè)以旅游業(yè)為主的地區(qū),每年各個(gè)月份從事旅游服務(wù)工作的人數(shù)會(huì)發(fā)生周期性變化.現(xiàn)假設(shè)該地區(qū)每年各個(gè)月份從事旅游服務(wù)工作的人數(shù)可近似地用函數(shù)來(lái)刻畫(huà).其中:正整數(shù)表示月份且,例如時(shí)表示1月份;是正整數(shù);
統(tǒng)計(jì)發(fā)現(xiàn),該地區(qū)每年各個(gè)月份從事旅游服務(wù)工作的人數(shù)有以下規(guī)律:
①各年相同的月份,該地區(qū)從事旅游服務(wù)工作的人數(shù)基本相同;
②該地區(qū)從事旅游服務(wù)工作的人數(shù)最多的8月份和最少的2月份相差約400人;
③2月份該地區(qū)從事旅游服務(wù)工作的人數(shù)約為100人,隨后逐月遞增直到8月份達(dá)到最多.
(I)試根據(jù)已知信息,確定一個(gè)符合條件的的表達(dá)式;
(II)一般地,當(dāng)該地區(qū)從事旅游服務(wù)工作的人數(shù)超過(guò)400人時(shí),該地區(qū)進(jìn)入了一年中的旅游“旺季”.那么,一年中的哪幾個(gè)月是該地區(qū)的旅游“旺季”?請(qǐng)說(shuō)明理由.

查看答案和解析>>

若函數(shù)f(x)滿足:在定義域內(nèi)存在實(shí)數(shù)x0,使f(x0+k)=f(x0)+f(k)(k為常數(shù)),則稱(chēng)“f(x)關(guān)于k可線性分解”.
(1)函數(shù)f(x)=2x+x2是否關(guān)于1可線性分解?請(qǐng)說(shuō)明理由;
(2)已知函數(shù)g(x)=lnx-ax+1(a>0)關(guān)于a可線性分解,求a的范圍;
(3)在(2)的條件下,當(dāng)a取最小整數(shù)時(shí);
(i)求g(x)的單調(diào)區(qū)間;
(ii)證明不等式:(n!)2≤en(n-1)(n∈N*).

查看答案和解析>>


同步練習(xí)冊(cè)答案