∴b2=a2-c2=12.∴所求動圓C的圓心的軌跡方程為.--5分 查看更多

 

題目列表(包括答案和解析)

已知動圓C與定圓C3
x
2
 
+2x+
y
2
 
+
3
4
=0
相外切,與定圓C2
x
2
 
-2x+
y
2
 
-
45
4
=0
內(nèi)相切.
(1)求動圓C的圓心C的軌跡方程;
(2)若直線l:y=kx+l(k≠0)與C的軌跡交于不同的兩點M、N,且線段MN的垂直平分線過定點G(
1
8
,0)
,求k的取值范圍.

查看答案和解析>>

動圓C與定圓C1:(x+3)2+y2=32內(nèi)切,與定圓C2:(x-3)2+y2=8外切,A點坐標(biāo)為(0,
9
2
).
(1)求動圓C的圓心C的軌跡方程和離心率;
(2)若軌跡C上的兩點P,Q滿足
AP
=5
AQ
,求|PQ|的值.

查看答案和解析>>

已知動圓C過點A(-2,0),且與圓M:(x-2)2+y2=64相內(nèi)切
(1)求動圓C的圓心的軌跡方程;
(2)設(shè)直線l:y=kx+m(其中k,m∈Z)與(1)所求軌跡交于不同兩點B,D,與雙曲線
x2
4 
-
y2
12
=1
交于不同兩點E,F(xiàn),問是否存在直線l,使得向量
DF
+
BE
=
0
,若存在,指出這樣的直線有多少條?若不存在,請說明理由.

查看答案和解析>>

(2013•懷化三模)已知圓C1:(x-1)2+y2=(
7
3
4
2,圓C2:(x+1)2+y2=(
3
4
2動圓C與圓C1內(nèi)切,與圓C2外切.記動圓C的圓心軌跡為曲線G,若動直線l與曲線G相交于P、Q兩點,且S△OPQ=
6
2
,其中O為坐標(biāo)原點.
(Ⅰ)求曲線G的方程.
(Ⅱ)設(shè)線段PQ的中點為M,求|OM|-|PQ|的最大值.

查看答案和解析>>

已知動圓C過點A(-2,0),且與圓M:(x-2)2+x2=64相內(nèi)切

(1)求動圓C的圓心的軌跡方程;

(2)設(shè)直線l: y=kx+m(其中k,m∈Z)與(1)所求軌跡交于不同兩點B,D,與雙曲線交于不同兩點E,F(xiàn),問是否存在直線l,使得向量,若存在,指出這樣的直線有多少條?若不存在,請說明理由.

 

查看答案和解析>>


同步練習(xí)冊答案