題目列表(包括答案和解析)
一自來水廠用蓄水池通過管道向所管轄區(qū)域供水.某日凌晨,已知蓄水池有水9千噸,水廠計劃在當(dāng)日每小時向蓄水池注入水2千噸,且每小時通過管道向所管轄區(qū)域供水千噸.
(1)多少小時后,蓄水池存水量最少?
(2)當(dāng)蓄水池存水量少于3千噸時,供水就會出現(xiàn)緊張現(xiàn)象,那么當(dāng)日出現(xiàn)這種情況的時間有多長?
【解析】第一問中(1)設(shè)小時后,蓄水池有水千噸.依題意,當(dāng),即(小時)時,蓄水池的水量最少,只有1千噸
第二問依題意, 解得:
解:(1)設(shè)小時后,蓄水池有水千噸.………………………………………1分
依題意,…………………………………………4分
當(dāng),即(小時)時,蓄水池的水量最少,只有1千噸. ………2分
(2)依題意, ………………………………………………3分
解得:. …………………………………………………………………3分
所以,當(dāng)天有8小時會出現(xiàn)供水緊張的情況
已知函數(shù).()
(1)若在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;
(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.
【解析】第一問中,首先利用在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進(jìn)而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.然后求解得到。
解:(1)在區(qū)間上單調(diào)遞增,
則在區(qū)間上恒成立. …………3分
即,而當(dāng)時,,故. …………5分
所以. …………6分
(2)令,定義域為.
在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.
∵ …………9分
① 若,令,得極值點(diǎn),,
當(dāng),即時,在(,+∞)上有,此時在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;
當(dāng),即時,同理可知,在區(qū)間上遞增,
有,也不合題意; …………11分
② 若,則有,此時在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);
要使在此區(qū)間上恒成立,只須滿足,
由此求得的范圍是. …………13分
綜合①②可知,當(dāng)時,函數(shù)的圖象恒在直線下方.
D
[解析] 依題意得0<a<1,于是由f(1-)>1得loga(1-)>logaa,0<1-<a,由此解得1<x<,因此不等式f(1-)>1的解集是(1,),選D.
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)證明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長.
【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).
(1)證明:易得,于是,所以
(2) ,設(shè)平面PCD的法向量,
則,即.不防設(shè),可得.可取平面PAC的法向量于是從而.
所以二面角A-PC-D的正弦值為.
(3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得.
由,故
所以,,解得,即.
解法二:(1)證明:由,可得,又由,,故.又,所以.
(2)如圖,作于點(diǎn)H,連接DH.由,,可得.
因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,
因此所以二面角的正弦值為.
(3)如圖,因為,故過點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,故
在中,由,,
可得.由余弦定理,,
所以.
設(shè)函數(shù)f(x)=在[1,+∞上為增函數(shù).
(1)求正實數(shù)a的取值范圍;
(2)比較的大小,說明理由;
(3)求證:(n∈N*, n≥2)
【解析】第一問中,利用
解:(1)由已知:,依題意得:≥0對x∈[1,+∞恒成立
∴ax-1≥0對x∈[1,+∞恒成立 ∴a-1≥0即:a≥1
(2)∵a=1 ∴由(1)知:f(x)=在[1,+∞)上為增函數(shù),
∴n≥2時:f()=
(3) ∵ ∴
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com