因為..所以時.-------8分 查看更多

 

題目列表(包括答案和解析)

已知m>1,直線,橢圓C:,、分別為橢圓C的左、右焦點.

(Ⅰ)當(dāng)直線過右焦點時,求直線的方程;

(Ⅱ)設(shè)直線與橢圓C交于A、B兩點,△A、△B的重心分別為G、H.若原點O在以線段GH為直徑的圓內(nèi),求實數(shù)m的取值范圍.[

【解析】第一問中因為直線經(jīng)過點,0),所以,得.又因為m>1,所以,故直線的方程為

第二問中設(shè),由,消去x,得,

則由,知<8,且有

由題意知O為的中點.由可知從而,設(shè)M是GH的中點,則M().

由題意可知,2|MO|<|GH|,得到范圍

 

查看答案和解析>>

通過對大學(xué)生手機(jī)消費情況的調(diào)查,探討影響當(dāng)代大學(xué)生購買手機(jī)決策的因素.研究者通過隨機(jī)抽樣對北師大、北大兩地共150名被測試者進(jìn)行了調(diào)查,其中男生占45.2%,女生占54.8%.請自愿的被測試者填寫自制手機(jī)調(diào)查問卷(本問卷主要涵蓋三方面內(nèi)容:手機(jī)本身因素,服務(wù)及購買物理環(huán)境因素,廣告及品牌效應(yīng)因素.題目共16道,并隨機(jī)排序,其中無關(guān)題1道).同時,研究人員還在區(qū)內(nèi)各大手機(jī)專賣店收集相關(guān)資料.本研究一共發(fā)放問卷150份,有效回收率為90%.對問卷原始數(shù)據(jù)大致歸類后,再對部分題目進(jìn)行分析.

在手機(jī)本身特點上被測試者選擇結(jié)果(見表一)

表一  被測試者對手機(jī)質(zhì)量的選擇

 

次數(shù)

百分比

有效百分

累積百分

有效的

持久耐用

23

15.5

16.8

16.8

信號靈敏

54

36.5

39.4

56.2

實用省電

12

8.1

8.8

65.0

功能齊全

47

31.8

34.3

99.3

其他

1

0.7

0.7

100.0

總和

137

92.6

100.0

 

遺漏值

系統(tǒng)界定的遺漏值

11

7.4

 

 

總和

 

148

100.0

 

 

在品牌、廣告問題上被試關(guān)注(結(jié)果見表二)

表二  被測試者對廣告中認(rèn)為最可信的因素的選擇結(jié)果

 

次數(shù)

百分比

有效百分

累積百分

有效的

專業(yè)人士

43

29.1

29.5

29.5

名人

9

6.1

6.2

35.6

統(tǒng)計數(shù)據(jù)

69

46.6

47.3

82.9

其他

25

16.9

17.1

100.0

總和

146

98.6

100.0

 

遺漏值

系統(tǒng)界定的遺漏值

2

14

 

 

總和

 

148

100.0

 

 

被測試者對最有效的品牌公司形象塑造的策略的選擇對以上所搜集的數(shù)據(jù)以表格或圖表分類,在此研究基礎(chǔ)上試表述對所搜集的數(shù)據(jù)處理的結(jié)果.并分析潛在因素對大學(xué)生購買決策的影響,試從心理特點加以闡釋.

 

 

查看答案和解析>>

精英家教網(wǎng)某高中地處縣城,學(xué)校規(guī)定家到學(xué)校的路程在10里以內(nèi)的學(xué)生可以走讀,因交通便利,所以走讀生人數(shù)很多.該校學(xué)生會先后5次對走讀生的午休情況作了統(tǒng)計,得到如下資料:
①若把家到學(xué)校的距離分為五個區(qū)間:[0,2)、[2,4)、[4,6)、[6,8)、[8,10),則調(diào)查數(shù)據(jù)表明午休的走讀生分布在各個區(qū)間內(nèi)的頻率相對穩(wěn)定,得到了如圖所示的頻率分布直方圖;
②走讀生是否午休與下午開始上課的時間有著密切的關(guān)系.下表是根據(jù)5次調(diào)查數(shù)據(jù)得到的下午開始上課時間與平均每天午休的走讀生人數(shù)的統(tǒng)計表.
下午開始上課時間 1:30 1:40 1:50 2:00 2:10
平均每天午休人數(shù) 250 350 500 650 750
(Ⅰ)若隨機(jī)地調(diào)查一位午休的走讀生,其家到學(xué)校的路程(單位:里)在[2,6)的概率是多少?
(Ⅱ)如果把下午開始上課時間1:30作為橫坐標(biāo)0,然后上課時間每推遲10分鐘,橫坐標(biāo)x增加1,并以平均每天午休人數(shù)作為縱坐標(biāo)y,試列出x與y的統(tǒng)計表,并根據(jù)表中的數(shù)據(jù)求平均每天午休人數(shù)
y
與上課時間x之間的線性回歸方程
y
=bx+a;
(Ⅲ)預(yù)測當(dāng)下午上課時間推遲到2:20時,家距學(xué)校的路程在6里路以上的走讀生中約有多少人午休?
(注:線性回歸直線方程系數(shù)公式b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,a=
.
y
-b
.
x
.)

查看答案和解析>>


同步練習(xí)冊答案