題目列表(包括答案和解析)
在中,是三角形的三內角,是三內角對應的三邊,已知成等差數(shù)列,成等比數(shù)列
(Ⅰ)求角的大。
(Ⅱ)若,求的值.
【解析】第一問中利用依題意且,故
第二問中,由題意又由余弦定理知
,得到,所以,從而得到結論。
(1)依題意且,故……………………6分
(2)由題意又由余弦定理知
…………………………9分
即 故
代入得
在中,,分別是角所對邊的長,,且
(1)求的面積;
(2)若,求角C.
【解析】第一問中,由又∵∴∴的面積為
第二問中,∵a =7 ∴c=5由余弦定理得:得到b的值,然后又由余弦定理得:
又C為內角 ∴
解:(1) ………………2分
又∵∴ ……………………4分
∴的面積為 ……………………6分
(2)∵a =7 ∴c=5 ……………………7分
由余弦定理得:
∴ ……………………9分
又由余弦定理得:
又C為內角 ∴ ……………………12分
另解:由正弦定理得: ∴ 又 ∴
如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.
(Ⅰ)證明PC⊥AD;
(Ⅱ)求二面角A-PC-D的正弦值;
(Ⅲ)設E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.
【解析】解法一:如圖,以點A為原點建立空間直角坐標系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).
(1)證明:易得,于是,所以
(2) ,設平面PCD的法向量,
則,即.不防設,可得.可取平面PAC的法向量于是從而.
所以二面角A-PC-D的正弦值為.
(3)設點E的坐標為(0,0,h),其中,由此得.
由,故
所以,,解得,即.
解法二:(1)證明:由,可得,又由,,故.又,所以.
(2)如圖,作于點H,連接DH.由,,可得.
因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,
因此所以二面角的正弦值為.
(3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設交點為F,連接BE,EF. 故或其補角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,故
在中,由,,
可得.由余弦定理,,
所以.
在△ABC中,角A、B、C的對邊分別為a、b、c,向量=(sinA,b+c),=(a-c,sinC-sinB),滿足=
(Ⅰ)求角B的大小;
(Ⅱ)設=(sin(C+),), =(2k,cos2A) (k>1), 有最大值為3,求k的值.
【解析】本試題主要考查了向量的數(shù)量積和三角函數(shù),以及解三角形的綜合運用
第一問中由條件|p +q |=| p -q |,兩邊平方得p·q=0,又
p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,
根據(jù)正弦定理,可化為a(a-c)+(b+c)(c-b)=0,
即,又由余弦定理=2acosB,所以cosB=,B=
第二問中,m=(sin(C+),),n=(2k,cos2A) (k>1),m·n=2ksin(C+)+cos2A=2ksin(C+B) +cos2A
=2ksinA+-=-+2ksinA+=-+ (k>1).
而0<A<,sinA∈(0,1],故當sin=1時,m·n取最大值為2k-=3,得k=.
在△ABC中,內角A、B、C所對邊的邊長分別是a、b、c,已知c=2,C=.
(Ⅰ)若△ABC的面積等于,求a、b;
(Ⅱ)若,求△ABC的面積.
【解析】第一問中利用余弦定理及已知條件得又因為△ABC的面積等于,所以,得聯(lián)立方程,解方程組得.
第二問中。由于即為即.
當時, , , , 所以當時,得,由正弦定理得,聯(lián)立方程組,解得,得到。
解:(Ⅰ) (Ⅰ)由余弦定理及已知條件得,………1分
又因為△ABC的面積等于,所以,得,………1分
聯(lián)立方程,解方程組得. ……………2分
(Ⅱ)由題意得,
即. …………2分
當時, , , , ……1分
所以 ………………1分
當時,得,由正弦定理得,聯(lián)立方程組
,解得,; 所以
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com