又.故平面. ----8分 查看更多

 

題目列表(包括答案和解析)

在棱長為的正方體中,是線段的中點(diǎn),.

(1) 求證:^;

(2) 求證://平面;

(3) 求三棱錐的表面積.

【解析】本試題考查了線線垂直和線面平行的判定定理和表面積公式的運(yùn)用。第一問中,利用,得到結(jié)論,第二問中,先判定為平行四邊形,然后,可知結(jié)論成立。

第三問中,是邊長為的正三角形,其面積為,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image017.png">平面,所以,

所以是直角三角形,其面積為

同理的面積為, 面積為.  所以三棱錐的表面積為.

解: (1)證明:根據(jù)正方體的性質(zhì),

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image028.png">,

所以,又,所以,

所以^.               ………………4分

(2)證明:連接,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image033.png">,

所以為平行四邊形,因此,

由于是線段的中點(diǎn),所以,      …………6分

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image035.png">,平面,所以∥平面.   ……………8分

(3)是邊長為的正三角形,其面積為,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image017.png">平面,所以,

所以是直角三角形,其面積為,

同理的面積為,              ……………………10分

面積為.          所以三棱錐的表面積為

 

查看答案和解析>>

(文)(本小題8分)

如圖,在四棱錐中,平面,,

(1)求證:

(2)求點(diǎn)到平面的距離

   證明:(1)平面,

  

   平面  (4分)

   (2)設(shè)點(diǎn)到平面的距離為

   ,

   求得即點(diǎn)到平面的距離為               (8分)

(其它方法可參照上述評(píng)分標(biāo)準(zhǔn)給分)

 

 

查看答案和解析>>

在邊長為的正方形ABCD中,E、F分別為BC、CD的中點(diǎn),M、N分別為AB、CF的中點(diǎn),現(xiàn)沿AE、AF、EF折疊,使B、C、D三點(diǎn)重合,構(gòu)成一個(gè)三棱錐.

(I)判別MN與平面AEF的位置關(guān)系,并給出證明;

(II)求多面體E-AFMN的體積.

                 

【解析】第一問因翻折后B、C、D重合(如下圖),所以MN應(yīng)是的一條中位線,則利用線線平行得到線面平行。

第二問因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091227575151928240_ST.files/image005.png">平面BEF,……………8分

,

,又 ∴

(1)因翻折后B、C、D重合(如圖),

所以MN應(yīng)是的一條中位線,………………3分

.………6分

(2)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912273087455588/SYS201207091227575151928240_ST.files/image005.png">平面BEF,……………8分

,

,………………………………………10分

 ∴

 

查看答案和解析>>

如圖,在四棱錐中,⊥底面,底面為正方形,分別是,的中點(diǎn).

(I)求證:平面

(II)求證:;

(III)設(shè)PD=AD=a, 求三棱錐B-EFC的體積.

【解析】第一問利用線面平行的判定定理,,得到

第二問中,利用,所以

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921145879762728/SYS201206192116075476939219_ST.files/image018.png">,,從而得

第三問中,借助于等體積法來求解三棱錐B-EFC的體積.

(Ⅰ)證明: 分別是的中點(diǎn),    

,.       …4分

(Ⅱ)證明:四邊形為正方形,

,

, ,

,.    ………8分

(Ⅲ)解:連接AC,DB相交于O,連接OF, 則OF⊥面ABCD,

 

查看答案和解析>>

設(shè)點(diǎn)是拋物線的焦點(diǎn),是拋物線上的個(gè)不同的點(diǎn)().

(1) 當(dāng)時(shí),試寫出拋物線上的三個(gè)定點(diǎn)、、的坐標(biāo),從而使得

(2)當(dāng)時(shí),若,

求證:;

(3) 當(dāng)時(shí),某同學(xué)對(duì)(2)的逆命題,即:

“若,則.”

開展了研究并發(fā)現(xiàn)其為假命題.

請你就此從以下三個(gè)研究方向中任選一個(gè)開展研究:

① 試構(gòu)造一個(gè)說明該逆命題確實(shí)是假命題的反例(本研究方向最高得4分);

② 對(duì)任意給定的大于3的正整數(shù),試構(gòu)造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);

③ 如果補(bǔ)充一個(gè)條件后能使該逆命題為真,請寫出你認(rèn)為需要補(bǔ)充的一個(gè)條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).

【評(píng)分說明】本小題若填空不止一個(gè)研究方向,則以實(shí)得分最高的一個(gè)研究方向的得分作為本小題的最終得分.

【解析】第一問利用拋物線的焦點(diǎn)為,設(shè),

分別過作拋物線的準(zhǔn)線的垂線,垂足分別為.

由拋物線定義得到

第二問設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.

由拋物線定義得

第三問中①取時(shí),拋物線的焦點(diǎn)為,

設(shè)分別過作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得

,不妨取;;

解:(1)拋物線的焦點(diǎn)為,設(shè),

分別過作拋物線的準(zhǔn)線的垂線,垂足分別為.由拋物線定義得

 

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image010.png">,所以

故可取滿足條件.

(2)設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.

由拋物線定義得

   又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image017.png">

所以.

(3) ①取時(shí),拋物線的焦點(diǎn)為,

設(shè)分別過作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得

,

,不妨取;;,

,

.

,,,是一個(gè)當(dāng)時(shí),該逆命題的一個(gè)反例.(反例不唯一)

② 設(shè),分別過

拋物線的準(zhǔn)線的垂線,垂足分別為

及拋物線的定義得

,即.

因?yàn)樯鲜霰磉_(dá)式與點(diǎn)的縱坐標(biāo)無關(guān),所以只要將這點(diǎn)都取在軸的上方,則它們的縱坐標(biāo)都大于零,則

,所以.

(說明:本質(zhì)上只需構(gòu)造滿足條件且的一組個(gè)不同的點(diǎn),均為反例.)

③ 補(bǔ)充條件1:“點(diǎn)的縱坐標(biāo))滿足 ”,即:

“當(dāng)時(shí),若,且點(diǎn)的縱坐標(biāo))滿足,則”.此命題為真.事實(shí)上,設(shè),

分別過作拋物線準(zhǔn)線的垂線,垂足分別為,由,

及拋物線的定義得,即,則

,

又由,所以,故命題為真.

補(bǔ)充條件2:“點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對(duì)稱”,即:

“當(dāng)時(shí),若,且點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對(duì)稱,則”.此命題為真.(證略)

 

查看答案和解析>>


同步練習(xí)冊答案