[解]證明:(1)同理. 查看更多

 

題目列表(包括答案和解析)

在復(fù)平面內(nèi), 是原點(diǎn),向量對應(yīng)的復(fù)數(shù)是,=2+i。

(Ⅰ)如果點(diǎn)A關(guān)于實(shí)軸的對稱點(diǎn)為點(diǎn)B,求向量對應(yīng)的復(fù)數(shù)

(Ⅱ)復(fù)數(shù),對應(yīng)的點(diǎn)C,D。試判斷A、B、C、D四點(diǎn)是否在同一個圓上?并證明你的結(jié)論。

【解析】第一問中利用復(fù)數(shù)的概念可知得到由題意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i  ∵ (2+i)(-2i)=2-4i,      ∴  =

第二問中,由題意得,=(2,1)  ∴

同理,所以A、B、C、D四點(diǎn)到原點(diǎn)O的距離相等,

∴A、B、C、D四點(diǎn)在以O(shè)為圓心,為半徑的圓上

(Ⅰ)由題意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i     3分

     ∵ (2+i)(-2i)=2-4i,      ∴  =                 2分

(Ⅱ)A、B、C、D四點(diǎn)在同一個圓上。                              2分

證明:由題意得,=(2,1)  ∴

  同理,所以A、B、C、D四點(diǎn)到原點(diǎn)O的距離相等,

∴A、B、C、D四點(diǎn)在以O(shè)為圓心,為半徑的圓上

 

查看答案和解析>>

在棱長為的正方體中,是線段的中點(diǎn),.

(1) 求證:^;

(2) 求證://平面

(3) 求三棱錐的表面積.

【解析】本試題考查了線線垂直和線面平行的判定定理和表面積公式的運(yùn)用。第一問中,利用,得到結(jié)論,第二問中,先判定為平行四邊形,然后,可知結(jié)論成立。

第三問中,是邊長為的正三角形,其面積為,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image017.png">平面,所以

所以是直角三角形,其面積為

同理的面積為, 面積為.  所以三棱錐的表面積為.

解: (1)證明:根據(jù)正方體的性質(zhì)

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image028.png">,

所以,又,所以,

所以^.               ………………4分

(2)證明:連接,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image033.png">,

所以為平行四邊形,因此,

由于是線段的中點(diǎn),所以,      …………6分

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image035.png">,平面,所以∥平面.   ……………8分

(3)是邊長為的正三角形,其面積為

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714422195910840_ST.files/image017.png">平面,所以

所以是直角三角形,其面積為

同理的面積為,              ……………………10分

面積為.          所以三棱錐的表面積為

 

查看答案和解析>>

設(shè)點(diǎn)是拋物線的焦點(diǎn),是拋物線上的個不同的點(diǎn)().

(1) 當(dāng)時,試寫出拋物線上的三個定點(diǎn)、的坐標(biāo),從而使得

;

(2)當(dāng)時,若,

求證:

(3) 當(dāng)時,某同學(xué)對(2)的逆命題,即:

“若,則.”

開展了研究并發(fā)現(xiàn)其為假命題.

請你就此從以下三個研究方向中任選一個開展研究:

① 試構(gòu)造一個說明該逆命題確實(shí)是假命題的反例(本研究方向最高得4分);

② 對任意給定的大于3的正整數(shù),試構(gòu)造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);

③ 如果補(bǔ)充一個條件后能使該逆命題為真,請寫出你認(rèn)為需要補(bǔ)充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).

【評分說明】本小題若填空不止一個研究方向,則以實(shí)得分最高的一個研究方向的得分作為本小題的最終得分.

【解析】第一問利用拋物線的焦點(diǎn)為,設(shè),

分別過作拋物線的準(zhǔn)線的垂線,垂足分別為.

由拋物線定義得到

第二問設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.

由拋物線定義得

第三問中①取時,拋物線的焦點(diǎn)為

設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得

,

,不妨取;;

解:(1)拋物線的焦點(diǎn)為,設(shè)

分別過作拋物線的準(zhǔn)線的垂線,垂足分別為.由拋物線定義得

 

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image010.png">,所以,

故可取滿足條件.

(2)設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.

由拋物線定義得

   又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912360984321474/SYS201207091236478588145986_ST.files/image017.png">

;

所以.

(3) ①取時,拋物線的焦點(diǎn)為

設(shè),分別過作拋物線的準(zhǔn)線垂線,垂足分別為.由拋物線定義得

,

,不妨取;;

,

.

,是一個當(dāng)時,該逆命題的一個反例.(反例不唯一)

② 設(shè),分別過

拋物線的準(zhǔn)線的垂線,垂足分別為

及拋物線的定義得

,即.

因?yàn)樯鲜霰磉_(dá)式與點(diǎn)的縱坐標(biāo)無關(guān),所以只要將這點(diǎn)都取在軸的上方,則它們的縱坐標(biāo)都大于零,則

,

,所以.

(說明:本質(zhì)上只需構(gòu)造滿足條件且的一組個不同的點(diǎn),均為反例.)

③ 補(bǔ)充條件1:“點(diǎn)的縱坐標(biāo))滿足 ”,即:

“當(dāng)時,若,且點(diǎn)的縱坐標(biāo))滿足,則”.此命題為真.事實(shí)上,設(shè),

分別過作拋物線準(zhǔn)線的垂線,垂足分別為,由

及拋物線的定義得,即,則

,

又由,所以,故命題為真.

補(bǔ)充條件2:“點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對稱”,即:

“當(dāng)時,若,且點(diǎn)與點(diǎn)為偶數(shù),關(guān)于軸對稱,則”.此命題為真.(證略)

 

查看答案和解析>>

如圖,在正三棱柱ABC-A1B1C1中,底面ABC為正三角形,M、N、G分別是棱CC1、AB、BC的中點(diǎn),且.

(Ⅰ)求證:CN∥平面AMB1;

(Ⅱ)求證: B1M⊥平面AMG.

【解析】本試題主要是考查了立體幾何匯總線面的位置關(guān)系的運(yùn)用。第一問中,要證CN∥平面AMB1;,只需要確定一條直線CN∥MP,既可以得到證明

第二問中,∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,得到線線垂直,B1M⊥AG,結(jié)合線面垂直的判定定理和性質(zhì)定理,可以得證。

解:(Ⅰ)設(shè)AB1 的中點(diǎn)為P,連結(jié)NP、MP ………………1分

∵CM   ,NP   ,∴CM       NP, …………2分

∴CNPM是平行四邊形,∴CN∥MP  …………………………3分

∵CN  平面AMB1,MP奐  平面AMB1,∴CN∥平面AMB1…4分

(Ⅱ)∵CC1⊥平面ABC,∴平面CC1 B1 B⊥平面ABC,

    ∵AG⊥BC,∴AG⊥平面CC1 B1 B,∴B1M⊥AG………………6分

∵CC1⊥平面ABC,平面A1B1C1∥平面ABC,∴CC1⊥AC,CC1⊥B1 C,  

設(shè):AC=2a,則

…………………………8分

同理,…………………………………9分

∵ BB1∥CC1,∴BB1⊥平面ABC,∴BB1⊥AB,

………………………………10分

 

查看答案和解析>>


同步練習(xí)冊答案