(Ⅱ)設(shè)橢圓的左.右頂點(diǎn)分別為.在第二象限內(nèi)取雙曲線 查看更多

 

題目列表(包括答案和解析)

設(shè)橢圓的左、右頂點(diǎn)分別為,點(diǎn)在橢圓上且異于兩點(diǎn),為坐標(biāo)原點(diǎn).

(Ⅰ)若直線的斜率之積為,求橢圓的離心率;

(Ⅱ)若,證明直線的斜率 滿足

【解析】(1)解:設(shè)點(diǎn)P的坐標(biāo)為.由題意,有  ①

,得,

,可得,代入①并整理得

由于,故.于是,所以橢圓的離心率

(2)證明:(方法一)

依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.

由條件得消去并整理得  ②

,,

.

整理得.而,于是,代入②,

整理得

,故,因此.

所以.

(方法二)

依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.

由P在橢圓上,有

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118494193384555_ST.files/image036.png">,,所以,即   ③

,,得整理得.

于是,代入③,

整理得

解得,

所以.

 

查看答案和解析>>

設(shè)橢圓的左、右頂點(diǎn)分別為,點(diǎn)在橢圓上且異于兩點(diǎn),為坐標(biāo)原點(diǎn).
(Ⅰ)若直線的斜率之積為,求橢圓的離心率;
(Ⅱ)若,證明直線的斜率 滿足

查看答案和解析>>

設(shè)橢圓的左、右頂點(diǎn)分別為、,離心率.過(guò)該橢圓上任一點(diǎn)P作PQ⊥x軸,垂足為Q,點(diǎn)C在QP的延長(zhǎng)線上,且.

(1)求橢圓的方程;

(2)求動(dòng)點(diǎn)C的軌跡E的方程;

(3)設(shè)直線MN過(guò)橢圓的右焦點(diǎn)與橢圓相交于M、N兩點(diǎn),且 ,求直線MN的方程.

 

查看答案和解析>>

設(shè)橢圓的左、右頂點(diǎn)分別為、,點(diǎn)在橢圓上且異于兩點(diǎn),為坐標(biāo)原點(diǎn).

(1)若直線的斜率之積為,求橢圓的離心率;

(2)對(duì)于由(1)得到的橢圓,過(guò)點(diǎn)的直線軸于點(diǎn),交軸于點(diǎn),若,求直線的斜率.

 

查看答案和解析>>

設(shè)橢圓的左、右頂點(diǎn)分別為、,離心率.過(guò)該橢圓上任一點(diǎn)P作PQ⊥x軸,垂足為Q,點(diǎn)C在QP的延長(zhǎng)線上,且.
(1)求橢圓的方程;
(2)求動(dòng)點(diǎn)C的軌跡E的方程;
(3)設(shè)直線MN過(guò)橢圓的右焦點(diǎn)與橢圓相交于M、N兩點(diǎn),且,求直線MN的方程.

查看答案和解析>>


同步練習(xí)冊(cè)答案