題目列表(包括答案和解析)
如圖,在正方體中,是棱的中點,在棱上.
且,若二面角的余弦值為,求實數(shù)的值.
【解析】以A點為坐標原點,AB為x軸,AD為y軸,AA1為z軸,建立空間直角坐標系,設正方體的棱長為4,分別求出平面C1PQ法向量和面C1PQ的一個法向量,然后求出兩法向量的夾角,建立等量關系,即可求出參數(shù)λ的值.
如圖,已知點,圓是以為直徑的圓,直線,(為參數(shù)).
(1)以坐標原點為極點,軸正半軸為極軸,建立極坐標系,求圓的極坐標方程;
(2)過原點作直線的垂線,垂足為,若動點滿足,當變化時,求點軌跡的參數(shù)方程,并指出它是什么曲線.
【解析】(1)圓C的普通方程為, (2’)
極坐標方程為。 (4’)
(2)直線l的普通方程為, (5’)
點 (7’)
(9’)
點M軌跡的參數(shù)方程為,圖形為圓
在平面直角坐標系xoy中,已知曲線C1:x2+y2=1,以平面直角坐標系xoy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線l:ρ(2cosθ-sinθ)=6.
(Ⅰ)將曲線C1上的所有點的橫坐標,縱坐標分別伸長為原來的、2倍后得到曲線C2,試寫出直線l的直角坐標方程和曲線C2的參數(shù)方程.
(Ⅱ)在曲線C2上求一點P,使點P到直線l的距離最大,并求出此最大值.
【解析】(Ⅰ)根據(jù)極坐標與普通方程的互化,將直線l:ρ(2cosθ-sinθ)=6化為普通方程,C2的方程為,化為普通方程;(Ⅱ)利用點到直線的距離公式表示出距離,求最值.
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com