在△ABC中.∠A.∠B.∠C所對(duì)的邊分別為a.b.c.且a.b.3c成等比數(shù)列.又∠A-∠C=.試求∠A.∠B.∠C的值. 查看更多

 

題目列表(包括答案和解析)

在△ABC中,A、B、C所對(duì)的邊分別為a、b、c,如果c=
3
a,B=30°,那么C等于( 。
A、120°B、105°
C、90°D、75°

查看答案和解析>>

在△ABC中,A、B、C所對(duì)的邊分別為a、b、c,且滿(mǎn)足a+b+c=
2
+1,sinA+sinB=
2
sinC,則c=
 
;若C=
π
3
,則△ABC的面積S=
 

查看答案和解析>>

在△ABC中,∠A、∠B、∠C所對(duì)的邊分別為a、b、c,若A=60°,b、c分別是方程x2-7x+11=0的兩個(gè)根,則a等于
 

查看答案和解析>>

在△ABC中,A、B、C所對(duì)的邊分別為a、b、c,且a=6 , b=5
3
 ,B=
3

(1)求sinA;
(2)求cos(B+C)+cos2A的值.

查看答案和解析>>

在△ABC中,∠A、∠B、∠C所對(duì)的邊分別為a、b、c,a=1,b=
3
,B=60°,則c=
2
2

查看答案和解析>>

難點(diǎn)磁場(chǎng)

解法一:由題設(shè)條件知B=60°,A+C=120°.

設(shè)α=6ec8aac122bd4f6e,則AC=2α,可得A=60°+α,C=60°-α,

6ec8aac122bd4f6e

依題設(shè)條件有6ec8aac122bd4f6e

6ec8aac122bd4f6e

整理得46ec8aac122bd4f6ecos2α+2cosα-36ec8aac122bd4f6e=0(M)

(2cosα6ec8aac122bd4f6e)(26ec8aac122bd4f6ecosα+3)=0,∵26ec8aac122bd4f6ecosα+3≠0,

∴2cosα6ec8aac122bd4f6e=0.從而得cos6ec8aac122bd4f6e.

解法二:由題設(shè)條件知B=60°,A+C=120°

6ec8aac122bd4f6e                                                              ①,把①式化為cosA+cosC=-26ec8aac122bd4f6ecosAcosC                                                              ②,

利用和差化積及積化和差公式,②式可化為

6ec8aac122bd4f6e                                          ③, 

將cos6ec8aac122bd4f6e=cos60°=6ec8aac122bd4f6e,cos(A+C)=-6ec8aac122bd4f6e代入③式得:

6ec8aac122bd4f6e                                                                             ④

將cos(AC)=2cos2(6ec8aac122bd4f6e)-1代入 ④:46ec8aac122bd4f6ecos2(6ec8aac122bd4f6e)+2cos6ec8aac122bd4f6e-36ec8aac122bd4f6e=0,(*),6ec8aac122bd4f6e

殲滅難點(diǎn)訓(xùn)練

一、1.解析:其中(3)(4)正確.

答案: B

二、2.解析:∵A+B+C=π,A+C=2B,

6ec8aac122bd4f6e

答案:6ec8aac122bd4f6e

3.解析:∵A為最小角∴2A+C=A+A+CA+B+C=180°.

∵cos(2A+C)=-6ec8aac122bd4f6e,∴sin(2A+C)=6ec8aac122bd4f6e.

C為最大角,∴B為銳角,又sinB=6ec8aac122bd4f6e.故cosB=6ec8aac122bd4f6e.

即sin(A+C)=6ec8aac122bd4f6e,cos(A+C)=-6ec8aac122bd4f6e.

∵cos(B+C)=-cosA=-cos[(2A+C)-(A+C)]=-6ec8aac122bd4f6e,

∴cos2(B+C)=2cos2(B+C)-1=6ec8aac122bd4f6e.

答案:6ec8aac122bd4f6e

三、4.解:如圖:連結(jié)BD,則有四邊形ABCD的面積:

6ec8aac122bd4f6e

S=SABD+SCDB=6ec8aac122bd4f6e?AB?ADsinA+6ec8aac122bd4f6e?BC?CD?sinC

A+C=180°,∴sinA=sinC

S=6ec8aac122bd4f6e(AB?AD+BC?CD)sinA=6ec8aac122bd4f6e(2×4+6×4)sinA=16sinA

由余弦定理,在△ABD中,BD2=AB2+AD2-2AB?AD?cosA=20-16cosA

在△CDB中,BD2=CB2+CD2-2CB?CD?cosC=52-48cosC

∴20-16cosA=52-48cosC,∵cosC=-cosA

∴64cosA=-32,cosA=-6ec8aac122bd4f6e,又0°<A<180°,∴A=120°故S=16sin120°=86ec8aac122bd4f6e.

5.解:R=rcosθ,由此得:6ec8aac122bd4f6e,

6ec8aac122bd4f6e

6ec8aac122bd4f6e

7.解:由ab3c成等比數(shù)列,得:b2=3ac

∴sin2B=3sinC?sinA=3(-6ec8aac122bd4f6e)[cos(A+C)-cos(AC)]

B=π-(A+C).∴sin2(A+C)=-6ec8aac122bd4f6e[cos(A+C)-cos6ec8aac122bd4f6e

即1-cos2(A+C)=-6ec8aac122bd4f6ecos(A+C),解得cos(A+C)=-6ec8aac122bd4f6e.

∵0<A+Cπ,∴A+C=6ec8aac122bd4f6eπ.又AC=6ec8aac122bd4f6eA=6ec8aac122bd4f6eπB=6ec8aac122bd4f6e,C=6ec8aac122bd4f6e.

8.解:按題意,設(shè)折疊后A點(diǎn)落在邊BC上改稱(chēng)P點(diǎn),顯然A、P兩點(diǎn)關(guān)于折線DE對(duì)稱(chēng),又設(shè)∠BAP=θ,∴∠DPA=θ,∠BDP=2θ,再設(shè)AB=a,AD=x,∴DP=x.在△ABC中,

APB=180°-∠ABP-∠BAP=120°-θ,?

由正弦定理知:6ec8aac122bd4f6e.∴BP=6ec8aac122bd4f6e

在△PBD中,6ec8aac122bd4f6e,

6ec8aac122bd4f6e 

∵0°≤θ≤60°,∴60°≤60°+2θ≤180°,∴當(dāng)60°+2θ=90°,即θ=15°時(shí),

sin(60°+2θ)=1,此時(shí)x取得最小值6ec8aac122bd4f6ea,即AD最小,∴ADDB=26ec8aac122bd4f6e-3.


同步練習(xí)冊(cè)答案