an是(1+x)n展開(kāi)式中含x2的項(xiàng)的系數(shù).則等于A.2 B.0 C.1 D.-1 查看更多

 

題目列表(包括答案和解析)

an是(1+x)n+1nÎN*)的展開(kāi)式中含x2的項(xiàng)的系數(shù),則                                                                         

A.1                         B.2                         C.3                         D.4

查看答案和解析>>

an是 (1 + x) n + 1 (nÎN*) 展開(kāi)式中含x2項(xiàng)的系數(shù),則 =
(19)  

A.2B.1C.D.0

查看答案和解析>>

an是 (1 + x) n + 1 (nÎN*) 展開(kāi)式中含x2項(xiàng)的系數(shù),則 =
(19)  
A.2B.1C.D.0

查看答案和解析>>

若an是(1+x)n+1(n∈N*)展開(kāi)式中含x2項(xiàng)的系數(shù),則
lim
n→∞
1
a1
+
1
a2
+…+
1
an
)=( 。
A、2
B、1
C、
1
2
D、0

查看答案和解析>>

若an是(1+x)n+1(n∈N*)展開(kāi)式中含x2項(xiàng)的系數(shù),則
lim
n→∞
1
a1
+
1
a2
+…+
1
an
)=( 。
A.2B.1C.
1
2
D.0

查看答案和解析>>

難點(diǎn)磁場(chǎng)

6ec8aac122bd4f6e

殲滅難點(diǎn)訓(xùn)練

一、1.解析:6ec8aac122bd4f6e

6ec8aac122bd4f6e

答案:A

2.解析:6ec8aac122bd4f6e

答案:C

二、3.解析:6ec8aac122bd4f6e

6ec8aac122bd4f6e

答案:6ec8aac122bd4f6e

4.解析:原式=6ec8aac122bd4f6e

6ec8aac122bd4f6e

a?b=86ec8aac122bd4f6e

答案:86ec8aac122bd4f6e

三、5.解:(1)由{an+16ec8aac122bd4f6ean}是公比為6ec8aac122bd4f6e的等比數(shù)列,且a1=6ec8aac122bd4f6e,a2=6ec8aac122bd4f6e,

an+16ec8aac122bd4f6ean=(a26ec8aac122bd4f6ea1)(6ec8aac122bd4f6e)n-1=(6ec8aac122bd4f6e6ec8aac122bd4f6e×6ec8aac122bd4f6e)(6ec8aac122bd4f6e)n-1=6ec8aac122bd4f6e,

an+1=6ec8aac122bd4f6ean+6ec8aac122bd4f6e                                               ①

又由數(shù)列{lg(an+16ec8aac122bd4f6ean)}是公差為-1的等差數(shù)列,且首項(xiàng)lg(a26ec8aac122bd4f6ea1)

=lg(6ec8aac122bd4f6e6ec8aac122bd4f6e×6ec8aac122bd4f6e)=-2,

∴其通項(xiàng)lg(an+16ec8aac122bd4f6ean)=-2+(n-1)(-1)=-(n+1),

an+16ec8aac122bd4f6ean=10(n+1),即an+1=6ec8aac122bd4f6ean+10(n+1)                                                                                                

①②聯(lián)立解得an=6ec8aac122bd4f6e[(6ec8aac122bd4f6e)n+1-(6ec8aac122bd4f6e)n+1

(2)Sn=6ec8aac122bd4f6e

6ec8aac122bd4f6e

6.解:由于6ec8aac122bd4f6e=1,可知,f(2a)=0                                                                      ①

同理f(4a)=0                                                                                                            ②

由①②可知f(x)必含有(x-2a)與(x-4a)的因式,由于f(x)是x的三次多項(xiàng)式,故可設(shè)f(x)=A(x-2a)(x-4a)(xC),這里A、C均為待定的常數(shù),

6ec8aac122bd4f6e

6ec8aac122bd4f6e,即4a2A-2aCA=-1                                                         ③

同理,由于6ec8aac122bd4f6e=1,得A(4a-2a)(4aC)=1,即8a2A-2aCA=1                        ④

由③④得C=3a,A=6ec8aac122bd4f6e,因而f(x)= 6ec8aac122bd4f6e (x-2a)(x-4a)(x-3a),

6ec8aac122bd4f6e

6ec8aac122bd4f6e

由數(shù)列{an}、{bn}都是由正數(shù)組成的等比數(shù)列,知p>0,q>0

6ec8aac122bd4f6e

當(dāng)p<1時(shí),q<1, 6ec8aac122bd4f6e

6ec8aac122bd4f6e

8.解:(1)an=(n-1)d,bn=26ec8aac122bd4f6e=2(n1)d?

Sn=b1+b2+b3+…+bn=20+2d+22d+…+2(n1)d?

d≠0,2d≠1,∴Sn=6ec8aac122bd4f6e

Tn=6ec8aac122bd4f6e

(2)當(dāng)d>0時(shí),2d>1

6ec8aac122bd4f6e

 

 

 


同步練習(xí)冊(cè)答案