題目列表(包括答案和解析)
b |
a |
1 |
2 |
c |
a |
1 |
2 |
若給定橢圓C:ax2+by2=1(a>0,b>0,ab)和點N(x0,y0),則稱直線l:ax0x+by0y=1為橢圓C的“伴隨直線”,
(1)若N(x0,y0)在橢圓C上,判斷橢圓C與它的“伴隨直線”的位置關(guān)系(當直線與橢圓的交點個數(shù)為0個、1個、2個時,分別稱直線與橢圓相離、相切、相交),并說明理由;
(2)命題:“若點N(x0,y0)在橢圓C的外部,則直線l與橢圓C必相交.”寫出這個命題的逆命題,判斷此逆命題的真假,說明理由;
(3)若N(x0,y0)在橢圓C的內(nèi)部,過N點任意作一條直線,交橢圓C于A、B,交l于M點(異于A、B),設(shè),,問是否為定值?說明理由.
若點A(2,–3),B(–3,–2),直線過點P(1,1),且與線段AB相交,則的斜率的取值范圍是( )
A.或 | B.或 |
C. | D. |
若點A(2,–3),B(–3,–2),直線過點P(1,1),且與線段AB相交,則的斜率的取值范圍是( )
A.或 B.或
C. D.
難點磁場
殲滅難點訓練
答案:A
答案:C
三、5.解:(1)由{an+1-an}是公比為的等比數(shù)列,且a1=,a2=,
∴an+1-an=(a2-a1)()n-1=(-×)()n-1=,
又由數(shù)列{lg(an+1-an)}是公差為-1的等差數(shù)列,且首項lg(a2-a1)
∴其通項lg(an+1-an)=-2+(n-1)(-1)=-(n+1),
∴an+1-an=10-(n+1),即an+1=an+10-(n+1) ②
同理f(4a)=0 ②
由①②可知f(x)必含有(x-2a)與(x-4a)的因式,由于f(x)是x的三次多項式,故可設(shè)f(x)=A(x-2a)(x-4a)(x-C),這里A、C均為待定的常數(shù),
同理,由于=1,得A(4a-2a)(4a-C)=1,即8a2A-2aCA=1 ④
由③④得C=3a,A=,因而f(x)= (x-2a)(x-4a)(x-3a),
由數(shù)列{an}、{bn}都是由正數(shù)組成的等比數(shù)列,知p>0,q>0
8.解:(1)an=(n-1)d,bn=2=2(n-1)d?
Sn=b1+b2+b3+…+bn=20+2d+22d+…+2(n-1)d?
(2)當d>0時,2d>1
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com