解:(1)由.當(dāng)時(shí),原二項(xiàng)式為,由,則系數(shù)最大的項(xiàng)為 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)已知函數(shù)

(I)若函數(shù)在區(qū)間上存在極值,求實(shí)數(shù)a的取值范圍;

(II)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)k的取值范圍.

(Ⅲ)求證:解:(1),其定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052512313679685506/SYS201205251234077812428021_ST.files/image007.png">,則

,

當(dāng)時(shí),;當(dāng)時(shí),

在(0,1)上單調(diào)遞增,在上單調(diào)遞減,

即當(dāng)時(shí),函數(shù)取得極大值.                                       (3分)

函數(shù)在區(qū)間上存在極值,

 ,解得                                            (4分)

(2)不等式,即

(6分)

,則

,即上單調(diào)遞增,                          (7分)

,從而,故上單調(diào)遞增,       (7分)

          (8分)

(3)由(2)知,當(dāng)時(shí),恒成立,即,

,則,                               (9分)

                                                                       (10分)

以上各式相加得,

                           

                                        (12分)

。

 

查看答案和解析>>

.如圖,由編號(hào),,…,,…()的圓柱自下而上組成.其中每一個(gè)圓柱的高與其底面圓的直徑相等,且對于任意兩個(gè)相鄰圓柱,上面圓柱的高是下面圓柱的高的一半.若編號(hào)1的圓柱的高為,則所有圓柱的體積的和為_______________(結(jié)果保留).

 

 

 

 

 

查看答案和解析>>

 如圖,由編號(hào),,…,,…()的圓柱自下而上組成.其中每一個(gè)圓柱的高與其底面圓的直徑相等,且對于任意兩個(gè)相鄰圓柱,上面圓柱的高是下面圓柱的高的一半.若編號(hào)1的圓柱的高為,則所有圓柱的體積          (結(jié)果保留).

 

查看答案和解析>>

復(fù)數(shù)Z在映射f下的象為(1+i)Z,則-1+2i的原象為( 。

查看答案和解析>>

給定映射f:(x,y)→(x+2y,2x-y),在影射f下(3,1)的原象為(  )

查看答案和解析>>


同步練習(xí)冊答案