中的的前n項(xiàng)和為.求證:解: 查看更多

 

題目列表(包括答案和解析)

解答題:解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟.

已知等比數(shù)列{an}中,a2=2,a5=128.

(1)

求通項(xiàng)an;

(2)

bnlog2an,數(shù)列{bn}的前n項(xiàng)和為Sn,且Sn=360,求n的值.

查看答案和解析>>

解答題:解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟.

把正奇數(shù)數(shù)列中的數(shù)按上小下大、左小右大的原則排成如下三角形數(shù)表:

設(shè)是位于這個(gè)三角形數(shù)表中從上往下數(shù)第行、從左往右數(shù)第個(gè)數(shù).

(1)

,求的值;

(2)

已知函數(shù)的反函數(shù)為,若記三角形數(shù)表中從上往下數(shù)第n行各數(shù)的和為,求數(shù)列的前n項(xiàng)和

查看答案和解析>>

解答題:解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.

對(duì)于數(shù)列{an},定義{△an}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中△anan+1-an(n∈N*).

(1)

若數(shù)列{an}的通項(xiàng)公式,求{△an}的通項(xiàng)公式

(2)

若數(shù)列{an}的首項(xiàng)是1,且滿足△anan=2n,(1)證明數(shù)列為等差數(shù)列;(2)求{an}的前n項(xiàng)和Sn

查看答案和解析>>

解答題:解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟

把正奇數(shù)數(shù)列中的數(shù)按上小下大、左小右大的原則排成如下三角形數(shù)表:

設(shè)是位于這個(gè)三角形數(shù)表中從上往下數(shù)第行、從左往右數(shù)第個(gè)數(shù).

(1)

若,求的值;

(2)

已知函數(shù)的反函數(shù)為,若記三角形數(shù)表中從上往下數(shù)第n行各數(shù)的和為,求數(shù)列的前n項(xiàng)和.

查看答案和解析>>

解答題:解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟.

對(duì)于數(shù)列{an},定義{△an}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中

(1)

若數(shù)列{an}的通項(xiàng)公式,求{△an}的通項(xiàng)公式

(2)

若數(shù)列{an}的首項(xiàng)是1,且滿足△an-an=2n

(1)證明數(shù)列為等差數(shù)列

(2)求{an}的前n項(xiàng)和Sn

查看答案和解析>>

一、          填空題:

 1、   2、   3、128  4、  5、64     6、 

 7、    8、    9、-4  10、15  11、

 12、(1)(2)(5)

二、選擇題:

 13、D      14、  C    15、  B    16、 C

 

17、解:以A為原點(diǎn),以AB、AD、AP所在直線分別軸,

建立空間直角坐標(biāo)系。 -----2分

則  C(2,1,0) N(1,0,1)  =(-1,-1,1)---4分

        D(0,2,0) M(1,,1) =(1,-,1)---6分

設(shè)的夾角為,

  ----8分  

  ---10分

  異面直線所成的角為  -----12分

18、解:延長(zhǎng),作于D,------4分

設(shè),則

 ------8分

解得.------10分

故船繼續(xù)朝原方向前進(jìn)有觸礁的危險(xiǎn).-----12

 

19、解: (1)因?yàn)閒(x+y)=f(x)+f(y),

令x=y=0,代入①式,-----2分

得f(0+0)=f(0)+f(0),即 f(0)=0  --------4分

(2)令y=-x,代入①式,得 f(x-x)=f(x)+f(-x),又f(0)=0,

則有0=f(x)+f(-x).------6分

即f(-x)=-f(x)對(duì)任意x∈R成立,

所以f(x)是奇函數(shù).......8分

(3)    f(3)=log3>0,即f(3)>f(0),

又f(x)在R上是單調(diào)函數(shù),所以f(x)在R上是增函數(shù),----10分

又由(1)f(x)是奇函數(shù).

  f(k?3)<-f(3-9-2)=f(-3+9+2),

k?3<-3+9+2,

------12

 ------------14分

20、解:(1)為等差數(shù)列,∵,又,

是方程的兩個(gè)根

又公差,∴,∴,      --------     2分

   ∴   ∴     -----------4分

(2)由(1)知,         -----------5分

,,         ------------7分

是等差數(shù)列,∴,∴    ----------8分

舍去)                         ------------9分

(3)由(2)得                    -------------11分

  ,時(shí)取等號(hào) ------- 13分

,時(shí)取等號(hào)15分

(1)、(2)式中等號(hào)不可能同時(shí)取到,所以   -----------16分

 

 

 

21、解:(1)橢圓相似.   -----2分

因?yàn)?sub>的特征三角形是腰長(zhǎng)為4,底邊長(zhǎng)為的等腰三角形,

而橢圓的特征三角形是腰長(zhǎng)為2,

底邊長(zhǎng)為的等腰三角形,

因此兩個(gè)等腰三角形相似,且相似比為.                                                                                                              --- 6分

(2)橢圓的方程為:.        --------8分

假定存在,則設(shè)、所在直線為,中點(diǎn)為.

.       -------10分

所以.

中點(diǎn)在直線上,所以有.        ----12分

.

.     -------14分

(3)橢圓的方程為:.        

兩個(gè)相似橢圓之間的性質(zhì)有:                          寫出一個(gè)給2分

①     兩個(gè)相似橢圓的面積之比為相似比的平方;

②     分別以兩個(gè)相似橢圓的頂點(diǎn)為頂點(diǎn)的四邊形也相似,相似比即為橢圓的相似比;

③     兩個(gè)相似橢圓被同一條直線所截得的線段中點(diǎn)重合;

過(guò)原點(diǎn)的直線截相似橢圓所得線段長(zhǎng)度之比恰為橢圓的相似比.    ----20分

 

 

 

 


同步練習(xí)冊(cè)答案