我們稱為橢圓的特征三角形.如果兩個橢圓的 特征三角形是相似的.則稱這兩個橢圓是“相似橢圓 .且三角形的相似比即為 橢圓的相似比. 查看更多

 

題目列表(包括答案和解析)

如圖,已知橢圓的焦點和上頂點分別為、,我們稱為橢圓的特征三角形.如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.

(1)已知橢圓,判斷是否相似,如果相似則求出的相似比,若不相似請說明理由;

(2)若與橢圓相似且半短軸長為的橢圓為,且直線與橢圓為相交于兩點(異于端點),試問:當面積最大時, 是否與有關?并證明你的結論.

(3)根據(jù)與橢圓相似且半短軸長為的橢圓的方程,提出你認為有價值的相似橢圓之間的三種性質(不需證明);

 

查看答案和解析>>

如圖,已知橢圓的焦點和上頂點分別為、,我們稱為橢圓的特征三角形.如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.
(1)已知橢圓,判斷是否相似,如果相似則求出的相似比,若不相似請說明理由;
(2)若與橢圓相似且半短軸長為的橢圓為,且直線與橢圓為相交于兩點(異于端點),試問:當面積最大時,是否與有關?并證明你的結論.
(3)根據(jù)與橢圓相似且半短軸長為的橢圓的方程,提出你認為有價值的相似橢圓之間的三種性質(不需證明);

查看答案和解析>>

如圖,已知橢圓的焦點和上頂點分別為、、,

我們稱為橢圓的特征三角形.如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是“相似橢圓”,且三角形的相似比即為 橢圓的相似比.

(1)已知橢圓,

判斷是否相似,如果相似則求出的相似比,若不相似請說明理由;

(2)設短半軸長為的橢圓與橢圓相似,試問在橢圓上是否存在兩點、關于直線對稱,,若存在求出b的范圍,不存在說明理由.

查看答案和解析>>

已知橢圓C:的焦點和上頂點分別為F1、F2、B,我們稱△F1BF2為橢圓C的特征三角形.如果兩個橢圓的特征三角形是相似三角形,則稱這兩個橢圓為“相似橢圓”,且特征三角形的相似比即為相似橢圓的相似比.已知橢圓C1以拋物線的焦點為一個焦點,且橢圓上任意一點到兩焦點的距離之和為4.(1)若橢圓C2與橢圓C1相似,且相似比為2,求橢圓C2的方程.
(2)已知點P(m,n)(mn≠0)是橢圓C1上的任一點,若點Q是直線y=nx與拋物線異于原點的交點,證明點Q一定落在雙曲線4x2-4y2=1上.
(3)已知直線l:y=x+1,與橢圓C1相似且短半軸長為b的橢圓為Cb,是否存在正方形ABCD,使得A,C在直線l上,B,D在曲線Cb上,若存在求出函數(shù)f(b)=SABCD的解析式及定義域,若不存在,請說明理由.

查看答案和解析>>

如圖,已知橢圓的焦點和上頂點分別為F1、F2、B,我們稱△F1BF2為橢圓C的特征三角形.如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.
(1)已知橢圓判斷C2與C1是否相似,如果相似則求出C2與C1的相似比,若不相似請說明理由;
(2)寫出與橢圓C1相似且半短軸長為b的橢圓Cb的方程,并列舉相似橢圓之間的三種性質(不需證明);
(3)已知直線l:y=x+1,在橢圓Cb上是否存在兩點M、N關于直線l對稱,若存在,則求出函數(shù)f(b)=|MN|的解析式.

查看答案和解析>>


同步練習冊答案