設與平面所成的角為.又. 查看更多

 

題目列表(包括答案和解析)

(12分)在平面α內有△ABC,在平面α外有點S,斜線SA⊥AC,SB⊥BC,且

斜線SA、SB與平面α所成角相等。

(1)求證:AC=BC

(2)又設點S到α的距離為4cm,AC⊥BC且AB=6cm,求S與AB的距離。

 

查看答案和解析>>

(12分)在平面α內有△ABC,在平面α外有點S,斜線SA⊥AC,SB⊥BC,且
斜線SA、SB與平面α所成角相等。
(1)求證:AC=BC
(2)又設點S到α的距離為4cm,AC⊥BC且AB=6cm,求S與AB的距離。

查看答案和解析>>

(12分)在平面α內有△ABC,在平面α外有點S,斜線SA⊥AC,SB⊥BC,且
斜線SA、SB與平面α所成角相等。
(1)求證:AC=BC
(2)又設點S到α的距離為4cm,AC⊥BC且AB=6cm,求S與AB的距離。

查看答案和解析>>

如圖,已知四棱錐P-ABCD的底面ABCD為等腰梯形,AB∥CD,AC⊥DB,AC與BD相交于點O,且頂點P在底面上的射影恰為O點,又BO=2,PO=,PB⊥PD。
(1)求異面直線PD與BC所成角的余弦值;
(2)求二面角P-AB-C的大;
(3)設點M在棱PC上,且=λ,問λ為何值時,PC⊥平面BMD。

查看答案和解析>>

如圖,已知四棱錐P-ABCD的底面ABCD為等腰梯形,AB∥DC,AC⊥BD,AC與BD相交于點O,且頂點P在底面上的射影恰為O點,又BO=2,PO=,PB⊥PD,
(Ⅰ)求異面直接PD與BC所成角的余弦值;
(Ⅱ)求二面角P-AB-C的大;
(Ⅲ)設點M在棱PC上,且=λ,問λ為何值時,PC⊥平面BMD。

查看答案和解析>>


同步練習冊答案