[思路分析] (1){x|x 查看更多

 

題目列表(包括答案和解析)

已知關(guān)于x的方程(1-a)x2+(a+2)x-4=0,a∈R,求:?

(1)方程有兩個(gè)正根的充要條件;

(2)方程至少有一個(gè)正根的充要條件.?

思路分析:先求出方程有兩個(gè)實(shí)根的充要條件,再討論x2的系數(shù)及運(yùn)用根與系數(shù)的關(guān)系分別求出要求的充要條件.

查看答案和解析>>

三位同學(xué)合作學(xué)習(xí),對(duì)問(wèn)題“已知不等式xy≤ax2+2y2對(duì)于x∈[1,2],y∈[2,3]恒成立,求a的取值范圍”提出了各自的解題思路.
甲說(shuō):“可視x為變量,y為常量來(lái)分析”.
乙說(shuō):“不等式兩邊同除以x2,再作分析”.
丙說(shuō):“把字母a單獨(dú)放在一邊,再作分析”.
參考上述思路,或自已的其它解法,可求出實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

三位同學(xué)合作學(xué)習(xí),對(duì)問(wèn)題“已知不等式xy≤ax2+2y2對(duì)于x∈[1,2],y∈[2,3]恒成立,求a的取值范圍”提出了各自的解題思路.
甲說(shuō):“可視x為變量,y為常量來(lái)分析”.
乙說(shuō):“尋找x與y的關(guān)系,再作分析”.
丙說(shuō):“把字母a單獨(dú)放在一邊,再作分析”.
參考上述思路,或自已的其它解法,可求出實(shí)數(shù)a的取值范圍是( 。
A、[-1,6]B、[-1,4)C、[-1,+∞)D、[1,+∞)

查看答案和解析>>

三位同學(xué)合作學(xué)習(xí),對(duì)問(wèn)題“已知不等式xy≤ax2+2y2對(duì)于x∈[1,2],y∈[2,3]恒成立,求a的取值范圍”提出了各自的解題思路.
甲說(shuō):“可視x為變量,y為常量來(lái)分析”.
乙說(shuō):“尋找x與y的關(guān)系,再作分析”.
丙說(shuō):“把字母a單獨(dú)放在一邊,再作分析”.
參考上述思路,或自已的其它解法,可求出實(shí)數(shù)a的取值范圍是
[-1,+∞)
[-1,+∞)

查看答案和解析>>

設(shè)x1和x2是方程x2+(t-3)x+(t2-24)=0的兩個(gè)實(shí)根,定義函數(shù)f(t)=logm(x12+x22)(m>1),求函數(shù)y=f(t)的單調(diào)區(qū)間,并說(shuō)明理由.

思路點(diǎn)撥:要想求函數(shù)y=f(t)的單調(diào)區(qū)間,首先要求函數(shù)y=f(t)的解析式及定義域.如果在整個(gè)定義域內(nèi)函數(shù)不是單調(diào)的,那就要把定義域分成幾個(gè)函數(shù)具有單調(diào)性的區(qū)間段,從而確定單調(diào)區(qū)間.

查看答案和解析>>


同步練習(xí)冊(cè)答案