即:所求二面角的大小為. 查看更多

 

題目列表(包括答案和解析)

已知四棱錐的底面為直角梯形,,底面,且,的中點(diǎn)。

(1)證明:面;

(2)求所成的角;

(3)求面與面所成二面角的余弦值.

【解析】(1)利用面面垂直的性質(zhì),證明CD⊥平面PAD.

(2)建立空間直角坐標(biāo)系,寫出向量的坐標(biāo),然后由向量的夾角公式求得余弦值,從而得所成角的大小.

(3)分別求出平面的法向量和面的一個(gè)法向量,然后求出兩法向量的夾角即可.

 

查看答案和解析>>

如圖所示的長方體中,底面是邊長為的正方形,的交點(diǎn),,是線段的中點(diǎn).

(Ⅰ)求證:平面

(Ⅱ)求證:平面;

(Ⅲ)求二面角的大小.

【解析】本試題主要考查了線面平行的判定定理和線面垂直的判定定理,以及二面角的求解的運(yùn)用。中利用,又平面平面,∴平面,,又,∴平面. 可得證明

(3)因?yàn)椤?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192139454539928006_ST.files/image021.png">為面的法向量.∵,

為平面的法向量.∴利用法向量的夾角公式,

的夾角為,即二面角的大小為

方法一:解:(Ⅰ)建立如圖所示的空間直角坐標(biāo)系.連接,則點(diǎn),

,又點(diǎn),,∴

,且不共線,∴

平面,平面,∴平面.…………………4分

(Ⅱ)∵,

,,即,

,∴平面.   ………8分

(Ⅲ)∵,,∴平面,

為面的法向量.∵,,

為平面的法向量.∴

的夾角為,即二面角的大小為

 

查看答案和解析>>


同步練習(xí)冊(cè)答案