解:⑴f (x)=?-1=(sin2x.cosx)?-1 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)已知函數f(x)=滿足f(c2)=.

 (1)求常數c的值;

(2)解不等式f(x)>+1.

查看答案和解析>>

已知函數f(x)=cos(2x+)+sinx·cosx

⑴ 求函數f(x)的單調減區(qū)間;       ⑵ 若xÎ[0,],求f(x)的最值;

 ⑶ 若f(a)=,2a是第一象限角,求sin2a的值.

【解析】第一問中,利用f(x)=cos2x-sin2x-cos2x+sin2x=sin2x-cos2x=sin(2x-)令+2kp≤2x-+2kp,

解得+kp≤x≤+kp 

第二問中,∵xÎ[0, ],∴2x-Î[-,],

∴當2x-=-,即x=0時,f(x)min=-,

當2x-, 即x=時,f(x)max=1

第三問中,(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp

∴ 2kp-<2a-+2kp,∴ cos(2a-)=

利用構造角得到sin2a=sin[(2a-)+]

解:⑴ f(x)=cos2x-sin2x-cos2x+sin2x     ………2分

sin2x-cos2x=sin(2x-)                 ……………………3分

⑴ 令+2kp≤2x-+2kp,

解得+kp≤x≤+kp          ……………………5分

∴ f(x)的減區(qū)間是[+kp,+kp](kÎZ)            ……………………6分

⑵ ∵xÎ[0, ],∴2x-Î[-,],           ……………………7分

∴當2x-=-,即x=0時,f(x)min=-,        ……………………8分

當2x-, 即x=時,f(x)max=1          ……………………9分

⑶ f(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp

∴ 2kp-<2a-+2kp,∴ cos(2a-)=,   ……………………11分

∴ sin2a=sin[(2a-)+]

=sin(2a-)·cos+cos(2a-)·sin   ………12分

××

 

查看答案和解析>>

已知函數f(x)=
1
2
x+1(0<x<
1
2
)
2-4X+1(
1
2
≤x<1)

(1)求f(
5
8
)
的值;
(2)解不等式f(x)>
2
8
+1

查看答案和解析>>

已知函數f(x)=為實數集R上的奇函數(其中a∈R),

(1)試求a的值;

(2)解不等式f(x)>2x-1.

查看答案和解析>>

(1)求常數c的值;

(2)解不等式f(x)>+1.

查看答案和解析>>


同步練習冊答案