(Ⅱ)依題意得..即. 查看更多

 

題目列表(包括答案和解析)

C

[解析] 依題意得=()[x+(1-x)]=13+≥13+2=25,當(dāng)且僅當(dāng),即x時(shí)取等號(hào),選C.

查看答案和解析>>

中,已知 ,面積,

(1)求的三邊的長;

(2)設(shè)(含邊界)內(nèi)的一點(diǎn),到三邊的距離分別是

①寫出所滿足的等量關(guān)系;

②利用線性規(guī)劃相關(guān)知識(shí)求出的取值范圍.

【解析】第一問中利用設(shè)中角所對邊分別為

    

又由 

又由 

       又

的三邊長

第二問中,①

依題意有

作圖,然后結(jié)合區(qū)域得到最值。

 

查看答案和解析>>

已知數(shù)列是公差不為零的等差數(shù)列,,且、、成等比數(shù)列。

⑴求數(shù)列的通項(xiàng)公式;

⑵設(shè),求數(shù)列的前項(xiàng)和。

【解析】第一問中利用等差數(shù)列的首項(xiàng)為,公差為d,則依題意有:

第二問中,利用第一問的結(jié)論得到數(shù)列的通項(xiàng)公式,

,利用裂項(xiàng)求和的思想解決即可。

 

查看答案和解析>>

中,是三角形的三內(nèi)角,是三內(nèi)角對應(yīng)的三邊,已知成等差數(shù)列,成等比數(shù)列

(Ⅰ)求角的大。

(Ⅱ)若,求的值.

【解析】第一問中利用依題意,故

第二問中,由題意又由余弦定理知

,得到,所以,從而得到結(jié)論。

(1)依題意,故……………………6分

(2)由題意又由余弦定理知

…………………………9分

   故

           代入

 

查看答案和解析>>

如圖,,…,,…是曲線上的點(diǎn),,,…,,…是軸正半軸上的點(diǎn),且,,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標(biāo)原點(diǎn)).

(1)寫出、之間的等量關(guān)系,以及、之間的等量關(guān)系;

(2)求證:);

(3)設(shè),對所有,恒成立,求實(shí)數(shù)的取值范圍.

【解析】第一問利用有,得到

第二問證明:①當(dāng)時(shí),可求得,命題成立;②假設(shè)當(dāng)時(shí),命題成立,即有則當(dāng)時(shí),由歸納假設(shè)及

第三問 

.………………………2分

因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時(shí),最大為,即

解:(1)依題意,有,,………………4分

(2)證明:①當(dāng)時(shí),可求得,命題成立; ……………2分

②假設(shè)當(dāng)時(shí),命題成立,即有,……………………1分

則當(dāng)時(shí),由歸納假設(shè)及

解得不合題意,舍去)

即當(dāng)時(shí),命題成立.  …………………………………………4分

綜上所述,對所有,.    ……………………………1分

(3) 

.………………………2分

因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時(shí),最大為,即

.……………2分

由題意,有. 所以,

 

查看答案和解析>>


同步練習(xí)冊答案