題目列表(包括答案和解析)
函數(shù)f(x)=(a,b是非零實常數(shù)),滿足f(2)=1,且方程f(x)=x有且僅有一個解。
(1)求a、b的值;
(2)是否存在實常數(shù)m,使得對定義域中任意的x,f(x)+f(m–x)=4恒成立?為什么?
(3)在直角坐標系中,求定點A(–3,1)到此函數(shù)圖象上任意一點P的距離|AP|的最小值。
已知函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.
(1)求f(x)的解析式;
(2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.
【解析】本試題主要考查了導(dǎo)數(shù)在研究函數(shù)中的運用。第一問,利用函數(shù)f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x
(2)中設(shè)切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數(shù)∴m=-2x03+6x02-6
然后利用g(x)=-2x3+6x2-6函數(shù)求導(dǎo)數(shù),判定單調(diào)性,從而得到要是有三解,則需要滿足-6<m<2
解:(1)f′(x)=3ax2+2bx+c
依題意
又f′(0)=-3
∴c=-3 ∴a=1 ∴f(x)=x3-3x
(2)設(shè)切點為(x0,x03-3x0),
∵f′(x)=3x2-3,∴f′(x0)=3x02-3
∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)
又切線過點A(2,m)
∴m-(x03-3x0)=(3x02-3)(2-x0)
∴m=-2x03+6x02-6
令g(x)=-2x3+6x2-6
則g′(x)=-6x2+12x=-6x(x-2)
由g′(x)=0得x=0或x=2
∴g(x)在(-∞,0)單調(diào)遞減,(0,2)單調(diào)遞增,(2,+∞)單調(diào)遞減.
∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2
畫出草圖知,當-6<m<2時,m=-2x3+6x2-6有三解,
所以m的取值范圍是(-6,2).
已知函數(shù)滿足f(2) = 0且方程f(x) = x有兩個相等的實根。
(1)求f(x)的解析式:
(2)是否存在m、n∈R(m < n),使f(x)的定義域為[m, n]且值域為[2m, 2n]?若存在,找出所有m , n;若不存在,請說明理由。
已知函數(shù)f(x)=3-x-log2x,正實數(shù)a,b,c成等差數(shù)列,且滿足f(a)f(b)f(c)<0,若公差d是方程f(x)=0的一個解,那么下列四個判斷:①d<a;②d>b;③d<c;④d>c中可能成立的序號為 。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com