取.則.因此.---------------9分 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=ex-ax,其中a>0.

(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增,故當(dāng)時(shí),取最小值

于是對一切恒成立,當(dāng)且僅當(dāng).       、

當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.

故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故當(dāng),

從而

所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

【點(diǎn)評】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進(jìn)行推理,然后把問題歸結(jié)為一個(gè)方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.

 

查看答案和解析>>

一個(gè)盒內(nèi)有大小相同的2個(gè)紅球和8個(gè)白球,現(xiàn)從盒內(nèi)一個(gè)一個(gè)地摸取,假設(shè)每個(gè)球摸到的可能性都相同.若每次摸出后都不放回,當(dāng)拿到白球后停止摸取,則摸取次數(shù)ξ的數(shù)學(xué)期望是
 

查看答案和解析>>

一個(gè)盒內(nèi)有大小相同的2個(gè)紅球和8個(gè)白球,現(xiàn)從盒內(nèi)一個(gè)一個(gè)地摸取,假設(shè)每個(gè)球摸到的可能性都相同.若每次摸出后都不放回,當(dāng)拿到白球后停止摸取,則第二次摸到白球的概率是
 

查看答案和解析>>

1、從4臺甲型電腦和5臺乙型電腦中任取3臺,其中兩種電腦都要取,則不同的取法種數(shù)是(  )

查看答案和解析>>

從邊長為1的正方形的中心和頂點(diǎn)這五點(diǎn)中,隨機(jī)(等可能)取兩點(diǎn),則該兩點(diǎn)間的距離為的概率是    .

 

查看答案和解析>>


同步練習(xí)冊答案