③若m∥α.n∥α.則m∥n, ④若α∥β.β∥γ.m⊥α..則m⊥γ 其中正確命題的序號是: (A) ①和② ③和④ (D)①和④ 查看更多

 

題目列表(包括答案和解析)

8、α,β,γ為不重合的平面,l,m,n表示直線,下列敘述正確的序號是
①②③

①若P∈α,Q∈α,則PQ?α;②若AB?α,AB?β,則A∈(α∩β)且B∈(α∩β);
③若α∥β且β∥γ,則α∥γ;④若l⊥m且m⊥n,則l⊥n.

查看答案和解析>>

α,β,γ為不重合的平面,l,m,n表示直線,下列敘述正確的序號是______
①若P∈α,Q∈α,則PQ?α;②若AB?α,AB?β,則A∈(α∩β)且B∈(α∩β);
③若αβ且βγ,則αγ;④若l⊥m且m⊥n,則l⊥n.

查看答案和解析>>

α,β,γ為不重合的平面,l,m,n表示直線,下列敘述正確的序號是________
①若P∈α,Q∈α,則PQ?α;②若AB?α,AB?β,則A∈(α∩β)且B∈(α∩β);
③若α∥β且β∥γ,則α∥γ;④若l⊥m且m⊥n,則l⊥n.

查看答案和解析>>

7、設(shè)m,n是空間兩條不同直線,α,β是空間兩個不同平面,則下列命題的正確的是( 。

查看答案和解析>>

設(shè)m,n∈N,f(x)=(1+2x)m+(1+x)n
(Ⅰ)當(dāng)m=n=2011時,記f(x)=a0+a1x+a2x2+…+a2011x2011,求a0-a1+a2-…-a2011
(Ⅱ)若f(x)展開式中x的系數(shù)是20,則當(dāng)m、n變化時,試求x2系數(shù)的最小值.

查看答案和解析>>

一、1 B     2 D    3 A   4 D     5 C     6 B   

7 A     8  A   9 C   10 D    11 C    12 B

二、13、3     14、      15、-160       16、   

三、17、解: (1)      ……… 3分

     的最小正周期為                     ………………… 5分

(2)  ,    …………………   7分     

               ………………… 10分  

               …………………  11分

 當(dāng)時,函數(shù)的最大值為1,最小值  ……… 12分

18.解:(1)P1=;                          ……… 6分

(2)方法一:P2=

方法二:P2=

方法三:P2=1-            ……… 12分

19、解法一:

(Ⅰ)連結(jié)CBCO,則OB C的中點(diǎn),連結(jié)DO。

∵在△AC中,O、D均為中點(diǎn),

ADO…………………………2分

A平面BD,DO平面BD

A∥平面BD。…………………4分

(Ⅱ)設(shè)正三棱柱底面邊長為2,則DC = 1。

    ∵∠DC = 60°,∴C= 。

DEBCE。

∵平面BC⊥平面ABC

DE⊥平面BC

EFBF,連結(jié)DF,則 DF⊥B

∴∠DFE是二面角D-B-C的平面角………………8分

RtDEC中,DE=

RtBFE中,EF = BE?sin

∴在RtDEF中,tan∠DFE =

∴二面角DBC的大小為arctan………………12分

解法二:以AC的中D為原點(diǎn)建立坐標(biāo)系,如圖,

設(shè)| AD | = 1∵∠DC =60°∴| C| = 。

     則A(1,0,0),B(0,,0),C(-1,0,0),

(1,0),

(Ⅰ)連結(jié)CBOC的中點(diǎn),連結(jié)DO,則     

     O.       =

A平面BD

A∥平面BD.………………………………………………4分

(Ⅱ)=(-1,0,),

       設(shè)平面BD的法向量為n = ( x , y , z ),則

       即  則有= 0令z = 1

n = (,0,1)          …………………………………8分

       設(shè)平面BC的法向量為m = ( x′ ,y′,z′)

    •  

        <p id="oz6dd"></p>

              令y = -1,解得m = (,-1,0)

              二面角DBC的余弦值為cos<n , m>=

        ∴二面角DBC的大小為arc cos               …………12分

        20、解: 解:

             (1)f(x)=x3+ax2+bx+c,    f′(x)=3x2+2ax+b,

                 由f′(-)=a+b=0,   f′(1)=3+2a+b=0,得

                 a=-,b=-2,…………  3分

        f′(x)=3x2-x-2=(3x+2)(x-1),函數(shù)f(x)的單調(diào)區(qū)間如下表:

        (-∞,-

        (-,1)

        1

        (1,+∞)

        f′(x)

        +

        0

        0

        +

        f(x)

         

        極大值

        極小值

        所以函數(shù)f(x)的遞增區(qū)間為(-∞,-)與(1,+∞);

        遞減區(qū)間為(-,1).             …………  6分

        (2)f(x)=x3-x2-2x+c  x∈[-1,2],當(dāng)x=-時,f(x)=+c為極大值,

        而f(2)=2+c,則f(2)=2+c為最大值.      …………  8分

        要使f(x)<c2(x∈[-1,2])恒成立,只須c2>f(2)=2+c,

        解得c<-1或c>2.               …………  12分

        21、(I)解:方程的兩個根為,

        當(dāng)時,,所以;

        當(dāng)時,,所以

        當(dāng)時,,,所以時;

        當(dāng)時,,所以.      …………  4分

        (II)解:

        .                          …………  8分

        (Ⅲ)=                       …………  12分

        22、解: (I)依題意知,點(diǎn)的軌跡是以點(diǎn)為焦點(diǎn)、直線為其相應(yīng)準(zhǔn)線,

        離心率為的橢圓

        設(shè)橢圓的長軸長為2a,短軸長為2b,焦距為2c,

        ,,∴點(diǎn)在x軸上,且,且3

        解之得:,     ∴坐標(biāo)原點(diǎn)為橢圓的對稱中心 

        ∴動點(diǎn)M的軌跡方程為:        …………  4分

        (II)設(shè),設(shè)直線的方程為,代入

                           ………… 5分

        , 

            ………… 6分

        ,,

        ,

         

        解得: (舍)   ∴ 直線EF在X軸上的截距為    …………8分

        (Ⅲ)設(shè),由知, 

        直線的斜率為    ………… 10分

        當(dāng)時,;

        當(dāng)時,,

        時取“=”)或時取“=”),

                     ………… 12分            

        綜上所述                  ………… 14分 

         


        同步練習(xí)冊答案
            <label id="oz6dd"><em id="oz6dd"></em></label>