(A) (B)4 (C) (D)5 查看更多

 

題目列表(包括答案和解析)

(2x-5的展開式中系數(shù)大于-1的項共有(    )

A.5項             B.4項               C.3項             D.2項

查看答案和解析>>

(1)選修4-2:矩陣與變換
已知矩陣M=(
2a
2b
)的兩^E值分別為λ1=-1和λ2=4.
(I)求實數(shù)的值;
(II )求直線x-2y-3=0在矩陣M所對應的線性變換作用下的像的方程.
(2)選修4-4:坐標系與參數(shù)方程
在直角坐標平面內,以坐標原點O為極點x軸的非負半軸為極軸建立極坐標系.已知曲線C的參數(shù)方程為
x=sinα
y=2cos2α-2
,
(a為餓),曲線D的鍵標方程為ρsin(θ-
π
4
)=-
3
2
2

(I )將曲線C的參數(shù)方程化為普通方程;
(II)判斷曲線c與曲線D的交點個數(shù),并說明理由.
(3)選修4-5:不等式選講
已知a,b為正實數(shù).
(I)求證:
a2
b
+
b2
a
≥a+b;
(II)利用(I)的結論求函數(shù)y=
(1-x)2
x
+
x2
1-x
(0<x<1)的最小值.

查看答案和解析>>

8、設(a-b)n的展開式中,二項式系數(shù)的和為256,則此二項展開式中系數(shù)最小的項是( 。

查看答案和解析>>

(1)選修4-2:矩陣與變換
已知二階矩陣M有特征值λ=3及對應的一個特征向量
e1
=
1
1
,并且矩陣M對應的變換將點(-1,2)變換成(3,0),求矩陣M.
(2)選修4-4:坐標系與參數(shù)方程
過點M(3,4),傾斜角為
π
6
的直線l與圓C:
x=2+5cosθ
y=1+5sinθ
(θ為參數(shù))相交于A、B兩點,試確定|MA|•|MB|的值.
(3)選修4-5:不等式選講
已知實數(shù)a,b,c,d,e滿足a+b+c+d+e=8,a2+b2+c2+d2+e2=16,試確定e的最大值.

查看答案和解析>>

(理)某娛樂中心有如下摸獎活動:拿8個白球和8個黑球放在一盒中,規(guī)定:凡摸獎者,每人每次交費1元,每次從盒中摸出5個球,中獎情況為:摸出5個白球中20元,摸出4個白球1個黑球中2元,摸出3個白球2個黑球中價值為0.5元的紀念品1件,其他情況無任何獎勵.若有1560人次摸獎,不計其他支出,用概率估計該中心收入錢數(shù)為( 。
A、120元B、480元C、980元D、148元

查看答案和解析>>

一、1 B     2 D    3 A   4 D     5 C     6 B   

7 A     8  A   9 C   10 D    11 C    12 B

二、13、3     14、      15、-160       16、   

三、17、解: (1)      ……… 3分

     的最小正周期為                     ………………… 5分

(2)  ,    …………………   7分     

               ………………… 10分  

               …………………  11分

 時,函數(shù)的最大值為1,最小值  ……… 12分

18.解:(1)P1=;                          ……… 6分

(2)方法一:P2=

方法二:P2=

方法三:P2=1-            ……… 12分

19、解法一:

(Ⅰ)連結CBCO,則OB C的中點,連結DO。

∵在△AC中,O、D均為中點,

ADO…………………………2分

A平面BD,DO平面BD

A∥平面BD!4分

(Ⅱ)設正三棱柱底面邊長為2,則DC = 1。

    ∵∠DC = 60°,∴C= 。

DEBCE

∵平面BC⊥平面ABC,

DE⊥平面BC

EFBF,連結DF,則 DF⊥B

∴∠DFE是二面角D-B-C的平面角………………8分

RtDEC中,DE=

RtBFE中,EF = BE?sin

∴在RtDEF中,tan∠DFE =

∴二面角DBC的大小為arctan………………12分

解法二:以AC的中D為原點建立坐標系,如圖,

設| AD | = 1∵∠DC =60°∴| C| = 。

     則A(1,0,0),B(0,,0),C(-1,0,0),

(1,0), ,

(Ⅰ)連結CBOC的中點,連結DO,則     

     O.       =

A平面BD,

A∥平面BD.………………………………………………4分

(Ⅱ)=(-1,0,),

       設平面BD的法向量為n = ( x , y , z ),則

       即  則有= 0令z = 1

n = (,0,1)          …………………………………8分

       設平面BC的法向量為m = ( x′ ,y′,z′)

 

<kbd id="ejveg"></kbd><sub id="ejveg"></sub>

<kbd id="ejveg"><dd id="ejveg"></dd></kbd>

          令y = -1,解得m = (,-1,0)

          二面角DBC的余弦值為cos<n , m>=

    ∴二面角DBC的大小為arc cos               …………12分

    20、解: 解:

         (1)f(x)=x3+ax2+bx+c,    f′(x)=3x2+2ax+b,

             由f′(-)=a+b=0,   f′(1)=3+2a+b=0,得

             a=-,b=-2,…………  3分

    f′(x)=3x2-x-2=(3x+2)(x-1),函數(shù)f(x)的單調區(qū)間如下表:

    (-∞,-

    (-,1)

    1

    (1,+∞)

    f′(x)

    +

    0

    0

    +

    f(x)

     

    極大值

    極小值

    所以函數(shù)f(x)的遞增區(qū)間為(-∞,-)與(1,+∞);

    遞減區(qū)間為(-,1).             …………  6分

    (2)f(x)=x3-x2-2x+c  x∈[-1,2],當x=-時,f(x)=+c為極大值,

    而f(2)=2+c,則f(2)=2+c為最大值.      …………  8分

    要使f(x)<c2(x∈[-1,2])恒成立,只須c2>f(2)=2+c,

    解得c<-1或c>2.               …………  12分

    21、(I)解:方程的兩個根為,

    時,,所以;

    時,,,所以;

    時,,,所以時;

    時,,,所以.      …………  4分

    (II)解:

    .                          …………  8分

    (Ⅲ)=                       …………  12分

    22、解: (I)依題意知,點的軌跡是以點為焦點、直線為其相應準線,

    離心率為的橢圓

    設橢圓的長軸長為2a,短軸長為2b,焦距為2c,

    ,∴點在x軸上,且,且3

    解之得:,     ∴坐標原點為橢圓的對稱中心 

    ∴動點M的軌跡方程為:        …………  4分

    (II)設,設直線的方程為,代入

                       ………… 5分

    , 

        ………… 6分

    ,,

    ,

     

    解得: (舍)   ∴ 直線EF在X軸上的截距為    …………8分

    (Ⅲ)設,由知, 

    直線的斜率為    ………… 10分

    時,;

    時,,

    時取“=”)或時取“=”),

                 ………… 12分            

    綜上所述                  ………… 14分 

     


    同步練習冊答案
    <big id="ejveg"><dl id="ejveg"></dl></big>