如圖.已知正三棱柱ABC- .D是AC的中點.∠DC = 60° 查看更多

 

題目列表(包括答案和解析)

(08年西工大附中理)如圖,已知正三棱柱ABCDAC的中點,∠DC = 60°

    (Ⅰ)求證:A∥平面BD;

(Ⅱ)求二面角DBC的大小。



 

查看答案和解析>>

三棱柱ABC-A1B1C1在如圖所示的空間直角坐標系中,已知AB=2,AC=4,A1A=3.D是BC的中點.

(1)求直線DB1與平面A1C1D所成角的正弦值;
(2)求二面角B1-A1D-C1的正弦值.

查看答案和解析>>

三棱柱ABCA1B1C1在如圖所示的空間直角坐標系中,已知AB2,AC4,A1A3.DBC的中點.

(1)求直線DB1與平面A1C1D所成角的正弦值;

(2)求二面角B1-A1D-C1的正弦值

 

查看答案和解析>>

三棱柱ABC-A1B1C1在如圖所示的空間直角坐標系中,已知AB=2,AC=4,A1A=3.D是BC的中點.

(1)求直線DB1與平面A1C1D所成角的正弦值;
(2)求二面角B1-A1D-C1的正弦值.

查看答案和解析>>

如圖,已知A1B1C1-ABC是正三棱柱,D是AC中點.

(1)證明AB1∥面DBC1

(2)假設(shè)AB1⊥BC1,BC=2,求線段AB1在側(cè)面BB1CC1上的射影長.

查看答案和解析>>

一、1 B     2 D    3 A   4 D     5 C     6 B   

7 A     8  A   9 C   10 D    11 C    12 B

二、13、3     14、      15、-160       16、   

三、17、解: (1)      ……… 3分

     的最小正周期為                     ………………… 5分

(2)  ,    …………………   7分     

               ………………… 10分  

               …………………  11分

 時,函數(shù)的最大值為1,最小值  ……… 12分

18.解:(1)P1=;                          ……… 6分

(2)方法一:P2=

方法二:P2=

方法三:P2=1-            ……… 12分

19、解法一:

(Ⅰ)連結(jié)CBCO,則OB C的中點,連結(jié)DO

∵在△AC中,OD均為中點,

ADO…………………………2分

A平面BD,DO平面BD,

A∥平面BD!4分

(Ⅱ)設(shè)正三棱柱底面邊長為2,則DC = 1。

    ∵∠DC = 60°,∴C= 。

DEBCE。

∵平面BC⊥平面ABC,

DE⊥平面BC

EFBF,連結(jié)DF,則 DF⊥B

∴∠DFE是二面角D-B-C的平面角………………8分

RtDEC中,DE=

RtBFE中,EF = BE?sin

∴在RtDEF中,tan∠DFE =

∴二面角DBC的大小為arctan………………12分

解法二:以AC的中D為原點建立坐標系,如圖,

設(shè)| AD | = 1∵∠DC =60°∴| C| = 。

     則A(1,0,0),B(0,,0),C(-1,0,0),

(1,0), ,

(Ⅰ)連結(jié)CBOC的中點,連結(jié)DO,則     

     O.       =

A平面BD,

A∥平面BD.………………………………………………4分

(Ⅱ)=(-1,0,),

       設(shè)平面BD的法向量為n = ( x , y , z ),則

       即  則有= 0令z = 1

n = (,0,1)          …………………………………8分

       設(shè)平面BC的法向量為m = ( x′ ,y′,z′)

 

      令y = -1,解得m = (,-1,0)

      二面角DBC的余弦值為cos<n , m>=

∴二面角DBC的大小為arc cos               …………12分

20、解: 解:

     (1)f(x)=x3+ax2+bx+c,    f′(x)=3x2+2ax+b,

         由f′(-)=a+b=0,   f′(1)=3+2a+b=0,得

         a=-,b=-2,…………  3分

f′(x)=3x2-x-2=(3x+2)(x-1),函數(shù)f(x)的單調(diào)區(qū)間如下表:

(-∞,-

(-,1)

1

(1,+∞)

f′(x)

+

0

0

+

f(x)

 

極大值

極小值

所以函數(shù)f(x)的遞增區(qū)間為(-∞,-)與(1,+∞);

遞減區(qū)間為(-,1).             …………  6分

(2)f(x)=x3-x2-2x+c  x∈[-1,2],當x=-時,f(x)=+c為極大值,

而f(2)=2+c,則f(2)=2+c為最大值.      …………  8分

要使f(x)<c2(x∈[-1,2])恒成立,只須c2>f(2)=2+c,

解得c<-1或c>2.               …………  12分

21、(I)解:方程的兩個根為,

時,,所以;

時,,,所以;

時,,,所以時;

時,,,所以.      …………  4分

(II)解:

.                          …………  8分

(Ⅲ)=                       …………  12分

22、解: (I)依題意知,點的軌跡是以點為焦點、直線為其相應(yīng)準線,

離心率為的橢圓

設(shè)橢圓的長軸長為2a,短軸長為2b,焦距為2c,

,,∴點在x軸上,且,且3

解之得:,     ∴坐標原點為橢圓的對稱中心 

∴動點M的軌跡方程為:        …………  4分

(II)設(shè),設(shè)直線的方程為,代入

                   ………… 5分

, 

    ………… 6分

,,

,

 

解得: (舍)   ∴ 直線EF在X軸上的截距為    …………8分

(Ⅲ)設(shè),由知, 

直線的斜率為    ………… 10分

時,;

時,,

時取“=”)或時取“=”),

             ………… 12分            

綜上所述                  ………… 14分 

 


同步練習(xí)冊答案