(II)求數(shù)列的前項(xiàng)的和, 查看更多

 

題目列表(包括答案和解析)

設(shè)數(shù)列的前項(xiàng)和為,對任意的正整數(shù),都有成立,記。                                       

(I)求數(shù)列與數(shù)列的通項(xiàng)公式;

(II)設(shè)數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得成立?若存在,找出一個(gè)正整數(shù);若不存在,請說明理由;

(III)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對任意正整數(shù)都有;

查看答案和解析>>

設(shè)數(shù)列的前項(xiàng)和為,已知對任意正整數(shù),都有成立。

(I)求數(shù)列的通項(xiàng)公式;

(II)設(shè),數(shù)列的前項(xiàng)和為,求證:。

查看答案和解析>>

設(shè)數(shù)列的前項(xiàng)和為,已知對任意正整數(shù),都有成立。
(I)求數(shù)列的通項(xiàng)公式;
(II)設(shè),數(shù)列的前項(xiàng)和為,求證:。

查看答案和解析>>

設(shè)數(shù)列的前項(xiàng)和為 已知
(I)設(shè),證明數(shù)列是等比數(shù)列;     
(II)求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

設(shè)數(shù)列的前項(xiàng)和為,,且數(shù)列是以2為公比的等比數(shù)列.

(I)求數(shù)列的通項(xiàng)公式;

(II)求.

查看答案和解析>>

一、1 B     2 D    3 A   4 D     5 C     6 B   

7 A     8  A   9 C   10 D    11 C    12 B

二、13、3     14、      15、-160       16、   

三、17、解: (1)      ……… 3分

     的最小正周期為                     ………………… 5分

(2)  ,    …………………   7分     

               ………………… 10分  

               …………………  11分

 當(dāng)時(shí),函數(shù)的最大值為1,最小值  ……… 12分

18.解:(1)P1=;                          ……… 6分

(2)方法一:P2=

方法二:P2=

方法三:P2=1-            ……… 12分

19、解法一:

(Ⅰ)連結(jié)CBCO,則OB C的中點(diǎn),連結(jié)DO。

∵在△AC中,O、D均為中點(diǎn),

ADO…………………………2分

A平面BD,DO平面BD,

A∥平面BD!4分

(Ⅱ)設(shè)正三棱柱底面邊長為2,則DC = 1。

    ∵∠DC = 60°,∴C= 。

DEBCE。

∵平面BC⊥平面ABC,

DE⊥平面BC

EFBF,連結(jié)DF,則 DF⊥B

∴∠DFE是二面角D-B-C的平面角………………8分

RtDEC中,DE=

RtBFE中,EF = BE?sin

∴在RtDEF中,tan∠DFE =

∴二面角DBC的大小為arctan………………12分

解法二:以AC的中D為原點(diǎn)建立坐標(biāo)系,如圖,

設(shè)| AD | = 1∵∠DC =60°∴| C| = 。

     則A(1,0,0),B(0,,0),C(-1,0,0),

(1,0), ,

(Ⅰ)連結(jié)CBOC的中點(diǎn),連結(jié)DO,則     

     O.       =

A平面BD,

A∥平面BD.………………………………………………4分

(Ⅱ)=(-1,0,),

       設(shè)平面BD的法向量為n = ( x , y , z ),則

       即  則有= 0令z = 1

n = (,0,1)          …………………………………8分

       設(shè)平面BC的法向量為m = ( x′ ,y′,z′)

<form id="66111"></form>

       

    1.       令y = -1,解得m = (,-1,0)

            二面角DBC的余弦值為cos<n , m>=

      ∴二面角DBC的大小為arc cos               …………12分

      20、解: 解:

           (1)f(x)=x3+ax2+bx+c,    f′(x)=3x2+2ax+b,

               由f′(-)=a+b=0,   f′(1)=3+2a+b=0,得

               a=-,b=-2,…………  3分

      f′(x)=3x2-x-2=(3x+2)(x-1),函數(shù)f(x)的單調(diào)區(qū)間如下表:

      (-∞,-

      (-,1)

      1

      (1,+∞)

      f′(x)

      +

      0

      0

      +

      f(x)

       

      極大值

      極小值

      所以函數(shù)f(x)的遞增區(qū)間為(-∞,-)與(1,+∞);

      遞減區(qū)間為(-,1).             …………  6分

      (2)f(x)=x3-x2-2x+c  x∈[-1,2],當(dāng)x=-時(shí),f(x)=+c為極大值,

      而f(2)=2+c,則f(2)=2+c為最大值.      …………  8分

      要使f(x)<c2(x∈[-1,2])恒成立,只須c2>f(2)=2+c,

      解得c<-1或c>2.               …………  12分

      21、(I)解:方程的兩個(gè)根為,

      當(dāng)時(shí),,所以

      當(dāng)時(shí),,所以

      當(dāng)時(shí),,所以時(shí);

      當(dāng)時(shí),,所以.      …………  4分

      (II)解:

      .                          …………  8分

      (Ⅲ)=                       …………  12分

      22、解: (I)依題意知,點(diǎn)的軌跡是以點(diǎn)為焦點(diǎn)、直線為其相應(yīng)準(zhǔn)線,

      離心率為的橢圓

      設(shè)橢圓的長軸長為2a,短軸長為2b,焦距為2c,

      ,∴點(diǎn)在x軸上,且,且3

      解之得:,     ∴坐標(biāo)原點(diǎn)為橢圓的對稱中心 

      ∴動(dòng)點(diǎn)M的軌跡方程為:        …………  4分

      (II)設(shè),設(shè)直線的方程為,代入

                         ………… 5分

      , 

          ………… 6分

      ,,

      ,

       

      解得: (舍)   ∴ 直線EF在X軸上的截距為    …………8分

      (Ⅲ)設(shè),由知, 

      直線的斜率為    ………… 10分

      當(dāng)時(shí),;

      當(dāng)時(shí),,

      時(shí)取“=”)或時(shí)取“=”),

                   ………… 12分            

      綜上所述                  ………… 14分 

       


      同步練習(xí)冊答案
      <samp id="66111"></samp>