題目列表(包括答案和解析)
(22) (本小題滿分14分)
如圖,橢圓(a>b>0)的一個(gè)焦點(diǎn)為F(1,0),且過(guò)點(diǎn)(2,0).
(Ⅰ)求橢圓C的方程;
(Ⅱ)若AB為垂直于x軸的動(dòng)弦,直線l:x=4與x軸交于點(diǎn)N,直線AF與BN交于點(diǎn)M.
(ⅰ)求證:點(diǎn)M恒在橢圓C上;
(ⅱ)求△AMN面積的最大值.
(本小題12分)
已知某商品的價(jià)格(元)與需求量(件)之間的關(guān)系有如下一組數(shù)據(jù):
14 |
16 |
18 |
20 |
22 |
|
12 |
10 |
7 |
5 |
3 |
(1)畫出關(guān)于的散點(diǎn)圖
(2)用最小二乘法求出回歸直線方程
(3)計(jì)算的值,并說(shuō)明回歸模型擬合程度的好壞。
(本小題12分)
已知某商品的價(jià)格(元)與需求量(件)之間的關(guān)系有如下一組數(shù)據(jù):
14 | 16 | 18 | 20 | 22 | |
12 | 10 | 7 | 5 | 3 |
(本小題滿分14分)
某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日 期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差x(°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù)y(個(gè)) | 22 | 25 | 29 | 26 | 16 | 12 |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(Ⅰ)求選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率;(5分)
(Ⅱ)若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;(6分)
(Ⅲ)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)該小組所得線性回歸方程是否理想?(3分)
(參考公式: )
(本小題滿分12分)在第9屆校園文化藝術(shù)節(jié)棋類比賽項(xiàng)目報(bào)名過(guò)程中,我校高二(2)班共有16名男生和14名女生預(yù)報(bào)名參加,調(diào)查發(fā)現(xiàn),男、女選手中分別有10人和6人會(huì)圍棋.
(I)根據(jù)以上數(shù)據(jù)完成以下22列聯(lián)表:
|
會(huì)圍棋 |
不會(huì)圍棋 |
總計(jì) |
男 |
|
|
|
女 |
|
|
|
總計(jì) |
|
|
30 |
并回答能否在犯錯(cuò)的概率不超過(guò)0.10的前提下認(rèn)為性別與會(huì)圍棋有關(guān)?
參考公式:其中n=a+b+c+d
參考數(shù)據(jù):
0.40 |
0.25 |
0.10 |
0.010 |
|
0.708 |
1.323 |
2.706 |
6.635 |
(Ⅱ)若從會(huì)圍棋的選手中隨機(jī)抽取3人成立該班圍棋代表隊(duì),則該代表隊(duì)中既有男又
有女的概率是多少?
(Ⅲ)若從14名女棋手中隨機(jī)抽取2人參加棋類比賽,記會(huì)圍棋的人數(shù)為,求的期望.
一、1 B 2 D 3 A 4 D 5 C 6 B
7 A 8 A 9 C 10 D 11 C 12 B
二、13、3 14、 15、-160 16、
三、17、解: (1) ……… 3分
的最小正周期為 ………………… 5分
(2) , ………………… 7分
………………… 10分
………………… 11分
當(dāng)時(shí),函數(shù)的最大值為1,最小值 ……… 12分
18.解:(1)P1=; ……… 6分
(2)方法一:P2=
方法二:P2=
方法三:P2=1- ……… 12分
19、解法一:
(Ⅰ)連結(jié)C交BC于O,則O是B C的中點(diǎn),連結(jié)DO。
∵在△AC中,O、D均為中點(diǎn),
∴A∥DO…………………………2分
∵A平面BD,DO平面BD,
∴A∥平面BD!4分
(Ⅱ)設(shè)正三棱柱底面邊長(zhǎng)為2,則DC = 1。
∵∠DC = 60°,∴C= 。
作DE⊥BC于E。
∵平面BC⊥平面ABC,
∴DE⊥平面BC
作EF⊥B于F,連結(jié)DF,則 DF⊥B
∴∠DFE是二面角D-B-C的平面角………………8分
在Rt△DEC中,DE=
在Rt△BFE中,EF = BE?sin
∴在Rt△DEF中,tan∠DFE =
∴二面角D-B-C的大小為arctan………………12分
解法二:以AC的中D為原點(diǎn)建立坐標(biāo)系,如圖,
設(shè)| AD | = 1∵∠DC =60°∴| C| = 。
則A(1,0,0),B(0,,0),C(-1,0,0),
(1,0), ,
(Ⅰ)連結(jié)C交B于O是C的中點(diǎn),連結(jié)DO,則
O. =
∵A平面BD,
∴A∥平面BD.………………………………………………4分
(Ⅱ)=(-1,0,),
設(shè)平面BD的法向量為n = ( x , y , z ),則
即 則有= 0令z = 1
則n = (,0,1) …………………………………8分
設(shè)平面BC的法向量為m = ( x′ ,y′,z′)
|