(2)如果△ABC的三邊a.b.c滿足b2=ac.且邊b所對的角為.試求角的范圍及此時函數(shù)的值域. 查看更多

 

題目列表(包括答案和解析)

如果△ABC的三邊ab、c滿足b2+c2=5a2,BE、CF分別為AC邊與AB邊上的中線,求證:BE⊥CF.

查看答案和解析>>

如果△ABC的三邊a、b、c滿足b2 + c 2 = 5a 2, BECF分別為AC邊與AB邊上的中線, 求

證:BECF.(請用所學(xué)過的向量知識加以證明).

查看答案和解析>>

如果△ABC的三邊a、b、c滿足b2 + c 2 = 5a 2, BECF分別為AC邊與AB邊上的中線, 求

證:BECF.(請用所學(xué)過的向量知識加以證明).

查看答案和解析>>

如果△ABC的三邊a、bc滿足b2+c2=5a2,BE、CF分別為AC邊與AB邊上的中線,求證:BECF

查看答案和解析>>

如果△ABC的三邊a、b、c滿足b2+c2=5a2BE、CF分別為AC邊與AB邊上的中線,求證:BECF

查看答案和解析>>

 

一、填空題 (每題5分)

1)  2)  3)0  4)   5)   6)   7)②④  8) 9) 10)  11)7

二、選擇題(每題5分)

12、A  13、B   14、D   15、D

三、解答題

16、16、

(1)因?yàn)?sub>,所以∠BCA(或其補(bǔ)角)即為異面直線所成角         -------(3分)

∠ABC=90°, AB=BC=1,所以,     -------(2分)

即異面直線所成角大小為。      -------(1分)

(2)直三棱柱ABC-A1B1C1中,,所以即為直線A1C與平面ABC所成角,所以。            -------(2分)

中,AB=BC=1得到,中,得到,    -------(2分)

 

所以               -------(2分)

 

17、         -------(1分)

    =           -------(1分)

=                   -------(1分)

為其圖象對稱中心的橫坐標(biāo),即=0,         -------(1分)

,                    -------(1分)

解得:         -------(1分)

 (2),        -------(2分)

,而,所以。                 -------(2分)

,,               -------(2分)

所以                             ------(2分)

 

18、,顧客得到的優(yōu)惠率是。         -------(5分)

(2)、設(shè)商品的標(biāo)價為x元,則500≤x≤800                         ----- -(2分)

消費(fèi)金額:  400≤0.8x≤640

由題意可得:

1       無解                                 ------(3分)

或(2        得:625≤x≤750                    ------(3分)

 

因此,當(dāng)顧客購買標(biāo)價在元內(nèi)的商品時,可得到不小于的優(yōu)惠率。------(1分)

 

 

19、(1)y=? =(2x-b)+(b+1)=2x+1                 -----(1分)

軸的交點(diǎn),所以;           -----(1分)

所以,即,                         -----(1分)

因?yàn)?sub>上,所以,即    -----(1分)

(2)設(shè) ),

)         ----(1分)

(A)當(dāng)時,

                                                     ----(1分)

==,而,所以              ----(1分)

(B)當(dāng)時,   ----(1分)

= =,                        ----(1分)

,所以                                       ----(1分)

因此)                              ----(1分)

 

(3)假設(shè),使得 ,

(A)為奇數(shù)

(一)為奇數(shù),則為偶數(shù)。則,。則,解得:矛盾。                   ----(1分)

(二)為偶數(shù),則為奇數(shù)。則,。則,解得:是正偶數(shù))。           ----(1分)

(B)為偶數(shù)

(一)為奇數(shù),則為奇數(shù)。則,。則,解得:是正奇數(shù))。             ----(1分)

(二)為偶數(shù),則為偶數(shù)。則,。則,解得:矛盾。           ----(1分)

由此得:對于給定常數(shù)m(),這樣的總存在;當(dāng)是奇數(shù)時,;當(dāng)是偶數(shù)時,。                 ----(1分)

 

20、(1)解法(A):點(diǎn)P與點(diǎn)F(2,0)的距離比它到直線+4=0的距離小2,所以點(diǎn)P與點(diǎn)F(2,0)的距離與它到直線+2=0的距離相等。              ----(1分)

由拋物線定義得:點(diǎn)在以為焦點(diǎn)直線+2=0為準(zhǔn)線的拋物線上,              ----(1分)

拋物線方程為。                             ----(2分) 

解法(B):設(shè)動點(diǎn),則。當(dāng)時,,化簡得:,顯然,而,此時曲線不存在。當(dāng)時,,化簡得:

(2),

,               ----(1分)

,

,即,,           ----(2分)

直線為,所以                      ----(1分)

                         ----(1分)

由(a)(b)得:直線恒過定點(diǎn)。                        ----(1分)

1、(逆命題)如果直線,且與拋物線相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn)。求證:OA⊥OB    (評分:提出問題得1分,解答正確得1分)

(若,求證:?=0,得分相同)

2、(簡單推廣命題)如果直線L與拋物線=2px(p>0)相交于A、B兩點(diǎn),且OA⊥OB。求證:直線L過定點(diǎn)(2p,0)

或:它的逆命題(評分:提出問題得2分,解答正確得1分)

3、(類比)

3.1(1)如果直線L與橢圓=1(a>b>0)相交于A、B兩點(diǎn),M是其右頂點(diǎn),當(dāng)MA⊥MB。求證:直線L過定點(diǎn)(,0)

3.1(2)如果直線L與橢圓=1(a>b>0)相交于A、B兩點(diǎn),M是其左頂點(diǎn),當(dāng)MA⊥MB。求證:直線L過定點(diǎn)(,0)

3.1(3)或它的逆命題

3.2(1)如果直線L與雙曲線=1(a>0,b>0)相交于A、B兩點(diǎn),M是其右頂點(diǎn),當(dāng)MA⊥MB。求證:直線L過定點(diǎn)(,0)(a≠b)

3.2(2)如果直線L與雙曲線=1(a>0,b>0)相交于A、B兩點(diǎn),M是其左頂點(diǎn),當(dāng)MA⊥MB。求證:直線L過定點(diǎn)(,0)(a≠b)

3.2(3)或它的逆命題

(評分:提出問題得3分,解答正確得3分)

4、(再推廣)

直角頂點(diǎn)在圓錐曲線上運(yùn)動

如:如果直線L與拋物線=2px(p>0)相交于A、B兩點(diǎn),P是拋物線上一定點(diǎn)(,),且PA⊥PB。求證:直線L過定點(diǎn)(+2p,-)

(評分:提出問題得4分,解答正確得3分)

5、(再推廣)

如果直線L與拋物線=2px(p>0)相交于A、B兩點(diǎn),P是拋物線上一定點(diǎn)(,),PA與PB的斜率乘積是常數(shù)m。求證:直線L過定點(diǎn)(,-)

(評分:提出問題得5分,解答正確得4分)

 

?為常數(shù)

頂點(diǎn)在圓錐曲線上運(yùn)動并把直角改為一般定角或OA與OB的斜率乘積是常數(shù)或?為常數(shù)

 

 

 

 


同步練習(xí)冊答案