10 某次文藝匯演.要將A.B.C.D.E.F這六個(gè)不同節(jié)目編排成節(jié)目單.如下表:序號(hào)123456節(jié)目 如果A.B兩個(gè)節(jié)目要相鄰.且都不排在第3號(hào)位置.那么節(jié)目單上不同的排序方式有 查看更多

 

題目列表(包括答案和解析)

某次文藝匯演中共有9個(gè)展演節(jié)目,其中有兩個(gè)是歌舞類節(jié)目,現(xiàn)隨機(jī)安排演出表,則出現(xiàn)歌舞類節(jié)目即不在第一個(gè),也不在最后一個(gè),且不連續(xù)演出的概率為
5
12
5
12
.(結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示)

查看答案和解析>>

9、某次文藝匯演為,要將A,B,C,D,E,F(xiàn)這五個(gè)不同節(jié)目編排成節(jié)目單,如下表:
序號(hào) 1 2 3 4 5 6
節(jié)目
如果A,B兩個(gè)節(jié)目要相鄰,且都不排在第3號(hào)位置,那么節(jié)目單上不同的排序方式有( 。

查看答案和解析>>

7、某次文藝匯演為,要將A,B,C,D,E這五個(gè)不同節(jié)目編排成節(jié)目單,要求A,B兩個(gè)節(jié)目不相鄰,且最后一個(gè)節(jié)目必須是A,B中的一個(gè),那么節(jié)目單上不同的排序方式有(  )

查看答案和解析>>

某次文藝匯演,要將A、B、C、D、E、F這六個(gè)不同節(jié)目編排成節(jié)目單,如果A、B兩個(gè)節(jié)目要相鄰,且都不排在第3號(hào)位置,那么節(jié)目單上不同的排序方式有( )

A、196種      B、144種            C、192種         D、72種

 

查看答案和解析>>

某次文藝匯演,要將A、B、C、D、E、F這六個(gè)不同節(jié)目編排成節(jié)目單,如下表:

序號(hào)

1

2

3

4

5

6

節(jié)目

 

 

 

 

 

 

如果A、B兩個(gè)節(jié)目要相鄰,且都不排在第3號(hào)位置,則節(jié)目單上不同的排序方式有(  。

A.192種      B.144種      C.96種        D.72種

 

查看答案和解析>>

 

一、選擇題:

  號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

 

B

A

D

B

D

B

C

C

A

B

D

A

二、填空題:

13.1       14.       15.5       16.

三、解答題:

17.解:(I)設(shè)“甲射擊5次,有兩次未擊中目標(biāo)”為事件A,則

      

答:甲射擊5次,有兩次未擊中目標(biāo)的概率為            …………5分

   (Ⅱ)設(shè)“兩人各射擊4次,甲恰好擊中目標(biāo)2次,且乙恰好擊中目標(biāo)3次”為事件B,則

    答:兩人各射擊4次,甲恰好擊中目標(biāo)2次,且乙恰好擊中目標(biāo)3次的概率為 

    ………………10分

18.解:(I)

       ……2分

      

       ………………………………………4分

      

       ………………………………………6分

   (II)由

       得

      

      

      

       x的取值范圍是…………12分

19.解:(Ⅰ)因?yàn)樗睦忮FP―ABCD的底面是正方形,PA⊥底面ABCD,

則CD⊥側(cè)面PAD 

……………5分

   (Ⅱ)建立如圖所示的空間直角坐標(biāo)系又PA=AD=2,

  • 設(shè)則有

    同理可得

    即得…………………………8分

    而平面PAB的法向量可為

    故所求平面AMN與PAB所成銳二面角的大小為…………12分

    20.解:(Ⅰ)∵為奇函數(shù),

    ………………………………………2分

    的最小值為

    又直線的斜率為

    因此,

    ,  ………………………………………5分

    (Ⅱ)由(Ⅰ)知  

       ∴,列表如下:

    極大

    極小

       所以函數(shù)的單調(diào)增區(qū)間是…………8分

    ,

    上的最大值是,最小值是………12分

    21.解:(Ⅰ)設(shè)d、q分別為數(shù)列、數(shù)列的公差與公比.

    由題可知,分別加上1,1,3后得2,2+d,4+2d

    是等比數(shù)列的前三項(xiàng),

    ……………4分

    由此可得

    …………………………6分

       (Ⅱ)

    當(dāng),

    當(dāng),

    ①―②,得

    ………………9分

    在N*是單調(diào)遞增的,

    ∴滿足條件恒成立的最小整數(shù)值為……12分

    22.解:(Ⅰ)∵雙曲線方程為

    ,

    ∴雙曲線方程為 ,又曲線C過點(diǎn)Q(2,),

    ∴雙曲線方程為    ………………5分

    (Ⅱ)∵,∴M、B2、N三點(diǎn)共線 

    ,   ∴

    (1)當(dāng)直線垂直x軸時(shí),不合題意 

    (2)當(dāng)直線不垂直x軸時(shí),由B1(0,3),B2(0,-3),

    可設(shè)直線的方程為,①

    ∴直線的方程為   ②

    由①,②知  代入雙曲線方程得

    ,得

    解得 , ∴,

    故直線的方程為      ………………12分

     

     

     

     

     

     

     

     


    同步練習(xí)冊(cè)答案