(Ⅱ)求兩人各射擊4次.甲恰好擊中目標(biāo)2次.且乙恰好擊中目標(biāo)3次的概率 查看更多

 

題目列表(包括答案和解析)

甲、乙兩人各射擊一次,擊中目標(biāo)的概率分別是
2
3
3
4
.假設(shè)兩人射擊是否擊中目標(biāo),相互之間沒(méi)有影響;每人各次射擊是否擊中目標(biāo),相互之間也沒(méi)有影響.
(1)求甲射擊4次,至少1次未擊中目標(biāo)的概率;
(2)求兩人各射擊4次,甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)3次的概率;
(3)假設(shè)某人連續(xù)2次未擊中目標(biāo),則停止射擊.問(wèn):乙恰好射擊5次后,被中止射擊的概率是多少?

查看答案和解析>>

甲、乙兩人各射擊一次,擊中目標(biāo)的概率分別是
2
3
3
4
,假設(shè)兩人每次射擊是否擊中目標(biāo)相互之間沒(méi)有影響.
(Ⅰ)求甲射擊5次,有兩次未擊中目標(biāo)的概率;
(Ⅱ)求兩人各射擊4次,甲恰好擊中目標(biāo)2次,且乙恰好擊中目標(biāo)3次的概率.

查看答案和解析>>

甲、乙兩人各射擊一次,擊中目標(biāo)的概率分別是
2
3
3
4
.假設(shè)兩人射擊是否擊中目標(biāo),相互之間沒(méi)有影響;每人各次射擊是否擊中目標(biāo),相互之間也沒(méi)有影響.
(1)假設(shè)某人連續(xù)2次未擊中目標(biāo),則停止射擊,問(wèn):乙恰好射擊4次后;被中止射擊的概率是多少;
(2)若共有三個(gè)目標(biāo)靶,甲先對(duì)一目標(biāo)射擊,若甲沒(méi)有射中,則乙再對(duì)目標(biāo)補(bǔ)射,若乙射中,則二人對(duì)第二目標(biāo)射擊,若乙也沒(méi)有射中,則停止射擊.問(wèn):共射中兩個(gè)目標(biāo)的概率,并求射中目標(biāo)靶的期望.

查看答案和解析>>

甲、乙兩人各射擊一次,擊中目標(biāo)的概率分別是。假設(shè)兩人射擊是否擊中目標(biāo),相互之間沒(méi)有影響;每次射擊是否擊中目標(biāo),相互之間沒(méi)有影響。

(Ⅰ)求甲射擊4次,至少1次未擊中目標(biāo)的概率;

(Ⅱ)求兩人各射擊4次,甲恰好擊中目標(biāo)2次且乙恰好擊中目標(biāo)3次的概率;

(Ⅲ)假設(shè)兩人連續(xù)兩次未擊中目標(biāo),則停止射擊。問(wèn):乙恰好射擊5次后,被中止射擊的概率是多少?

查看答案和解析>>

甲、乙兩人各射擊一次,擊中目標(biāo)的概率分別是,假設(shè)兩人每次射擊是否擊中目標(biāo)相互之間沒(méi)有影響  

(Ⅰ)求甲射擊5次,有兩次未擊中目標(biāo)的概率;

(Ⅱ)求兩人各射擊4次,甲恰好擊中目標(biāo)2次,且乙恰好擊中目標(biāo)3次的概率

查看答案和解析>>

 

一、選擇題:

  號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

 

B

A

D

B

D

B

C

C

A

B

D

A

二、填空題:

13.1       14.       15.5       16.

三、解答題:

17.解:(I)設(shè)“甲射擊5次,有兩次未擊中目標(biāo)”為事件A,則

      

答:甲射擊5次,有兩次未擊中目標(biāo)的概率為            …………5分

   (Ⅱ)設(shè)“兩人各射擊4次,甲恰好擊中目標(biāo)2次,且乙恰好擊中目標(biāo)3次”為事件B,則

    答:兩人各射擊4次,甲恰好擊中目標(biāo)2次,且乙恰好擊中目標(biāo)3次的概率為 

    ………………10分

18.解:(I)

       ……2分

      

       ………………………………………4分

      

       ………………………………………6分

   (II)由

       得

      

      

      

       x的取值范圍是…………12分

19.解:(Ⅰ)因?yàn)樗睦忮FP―ABCD的底面是正方形,PA⊥底面ABCD,

則CD⊥側(cè)面PAD 

……………5分

   (Ⅱ)建立如圖所示的空間直角坐標(biāo)系又PA=AD=2,

      <s id="ehi7w"><fieldset id="ehi7w"></fieldset></s>
        <ol id="ehi7w"></ol>
        <ol id="ehi7w"><source id="ehi7w"><dl id="ehi7w"></dl></source></ol>

        設(shè)則有

        同理可得

        即得…………………………8分

        而平面PAB的法向量可為

        故所求平面AMN與PAB所成銳二面角的大小為…………12分

        20.解:(Ⅰ)∵為奇函數(shù),

        ………………………………………2分

        的最小值為

        又直線的斜率為

        因此,

        ,  ………………………………………5分

        (Ⅱ)由(Ⅰ)知  

           ∴,列表如下:

        極大

        極小

           所以函數(shù)的單調(diào)增區(qū)間是…………8分

        ,

        上的最大值是,最小值是………12分

        21.解:(Ⅰ)設(shè)d、q分別為數(shù)列、數(shù)列的公差與公比.

        由題可知,分別加上1,1,3后得2,2+d,4+2d

        是等比數(shù)列的前三項(xiàng),

        ……………4分

        由此可得

        …………………………6分

           (Ⅱ)

        當(dāng),

        當(dāng),

        ①―②,得

        ………………9分

        在N*是單調(diào)遞增的,

        ∴滿足條件恒成立的最小整數(shù)值為……12分

        22.解:(Ⅰ)∵雙曲線方程為

        ,

        ∴雙曲線方程為 ,又曲線C過(guò)點(diǎn)Q(2,),

        ∴雙曲線方程為    ………………5分

        (Ⅱ)∵,∴M、B2、N三點(diǎn)共線 

        ,   ∴

        (1)當(dāng)直線垂直x軸時(shí),不合題意 

        (2)當(dāng)直線不垂直x軸時(shí),由B1(0,3),B2(0,-3),

        可設(shè)直線的方程為,①

        ∴直線的方程為   ②

        由①,②知  代入雙曲線方程得

        ,得,

        解得 , ∴

        故直線的方程為      ………………12分

         

         

         

         

         

         

         

         


        同步練習(xí)冊(cè)答案