兩點.若在圓上存在點.使求直線的方程. 南師大附校09高考二輪復習限時訓練 查看更多

 

題目列表(包括答案和解析)

直線l過x軸上的點M,l交橢圓
x2
8
+
y2
4
=1
于A,B兩點,O是坐標原點.
(1)若M的坐標為(2,0),當OA⊥OB時,求直線l的方程;
(2)若M的坐標為(1,0),設(shè)直線l的斜率為k(k≠0),是否存直線l,使得l垂直平分橢圓的一條弦?如果存在,求k的取值范圍;如果不存在,說明理由.

查看答案和解析>>

直線l過x軸上的點M,l交橢圓
x2
8
+
y2
4
=1
于A,B兩點,O是坐標原點.
(1)若M的坐標為(2,0),當OA⊥OB時,求直線l的方程;
(2)若M的坐標為(1,0),設(shè)直線l的斜率為k(k≠0),是否存直線l,使得l垂直平分橢圓的一條弦?如果存在,求k的取值范圍;如果不存在,說明理由.

查看答案和解析>>

已知直線l與橢圓C:
x2
3
+
y2
2
=1
交于P(x1,y1),Q(x2,y2)兩不同點,且△OPQ的面積S△OPQ=
6
2
,其中O為坐標原點.
(Ⅰ)證明x12+x22和y12+y22均為定值;
(Ⅱ)設(shè)線段PQ的中點為M,求|OM|•|PQ|的最大值;
(Ⅲ)橢圓C上是否存在點D,E,G,使得S△ODE=S△ODG=S△OEG=
6
2
?若存在,判斷△DEG的形狀;若不存在,請說明理由.

查看答案和解析>>

已知直線l:
1
4
x+b
(b≠0)與橢圓C:
x2
a2
+y2=1
相交于A、B兩點,點P在橢圓C上但不在直線l上.
(1)若P點的坐標為(1,
3
2
),求b的取值范圍;
(2)是否存在這樣的點P,使得直線PA、PE的斜率之積為定值?若存在,求出P點坐標及定值,若不存在,說明理由.

查看答案和解析>>

已知直線l:mx-y+1-m=0與圓C:x2+(y-1)2=5交于A、B兩點;
(Ⅰ)若|AB|=
17
,求直線l的傾斜角;
(Ⅱ)求弦AB的中點M的軌跡方程;
(Ⅲ)圓C上是否存在一點P使得△ABP為等邊三角形?若存在,求出P點坐標;不存在,請說明理由.

查看答案和解析>>

一、填空題

1、        2、40    3、②  ④)    4、-1     5、    6、3

7、       8、   9、1   10、    11、    12、46 

13、解:(1)∵ab,∴a?b=0.而a=(3sinα,cosα),b=(2sinα, 5sinα-4cosα),

a?b=6sin2α+5sinαcosα-4cos2α=0.……………………………………2分

由于cosα≠0,∴6tan2α+5tanα-4 =0.解之,得tanα=-,或tanα=.……… 6分

∵α∈(),tanα<0,故tanα=(舍去).∴tanα=-.…………7分

(2)∵α∈(),∴

由tanα=-,求得,=2(舍去).

,…………………………………………………………12分

cos()=. ……15分

14、解:由已知圓的方程為,

平移得到.

.

.                                                      

,且,∴.∴.

設(shè), 的中點為D.

,則,又.

的距離等于.     即,           ∴.

∴直線的方程為:.      

 


同步練習冊答案