故的最大值為3 --------------- 查看更多

 

題目列表(包括答案和解析)

函數(shù)在同一個(gè)周期內(nèi),當(dāng) 時(shí),取最大值1,當(dāng)時(shí),取最小值。

(1)求函數(shù)的解析式

(2)函數(shù)的圖象經(jīng)過怎樣的變換可得到的圖象?

(3)若函數(shù)滿足方程求在內(nèi)的所有實(shí)數(shù)根之和.

【解析】第一問中利用

又因

       函數(shù)

第二問中,利用的圖象向右平移個(gè)單位得的圖象

再由圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911025203078536/SYS201207091103422182387233_ST.files/image020.png">.縱坐標(biāo)不變,得到的圖象,

第三問中,利用三角函數(shù)的對(duì)稱性,的周期為

內(nèi)恰有3個(gè)周期,

并且方程內(nèi)有6個(gè)實(shí)根且

同理,可得結(jié)論。

解:(1)

又因

       函數(shù)

(2)的圖象向右平移個(gè)單位得的圖象

再由圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911025203078536/SYS201207091103422182387233_ST.files/image020.png">.縱坐標(biāo)不變,得到的圖象,

(3)的周期為

內(nèi)恰有3個(gè)周期,

并且方程內(nèi)有6個(gè)實(shí)根且

同理,

故所有實(shí)數(shù)之和為

 

查看答案和解析>>

已知二次函數(shù)的二次項(xiàng)系數(shù)為,且不等式的解集為,

(1)若方程有兩個(gè)相等的根,求的解析式;

(2)若的最大值為正數(shù),求的取值范圍.

【解析】第一問中利用∵f(x)+2x>0的解集為(1,3),

設(shè)出二次函數(shù)的解析式,然后利用判別式得到a的值。

第二問中,

解:(1)∵f(x)+2x>0的解集為(1,3),

   ①

由方程

              ②

∵方程②有兩個(gè)相等的根,

,

即5a2-4a-1=0,解得a=1(舍) 或 a=-1/5

a=-1/5代入①得:

(2)由

 

 解得:

故當(dāng)f(x)的最大值為正數(shù)時(shí),實(shí)數(shù)a的取值范圍是

 

查看答案和解析>>

某遠(yuǎn)洋捕漁船到遠(yuǎn)海捕魚,由于遠(yuǎn)海漁業(yè)資源豐富,每撒一次網(wǎng)都有w萬元的收益;同時(shí),又由于遠(yuǎn)海風(fēng)云未測(cè),每撒一次網(wǎng)存在遭遇沉船事故的可能,其概率為(常數(shù)k為大于1的正整數(shù)).假定,捕魚船噸位很大,可以裝下n次撒網(wǎng)所捕的魚,而在每次撒網(wǎng)時(shí),發(fā)生不發(fā)生沉船事故與前一次撒網(wǎng)無關(guān),若發(fā)生沉船事故,則原來所獲的收益將隨船的沉沒而不存在,又已知船長(zhǎng)計(jì)劃在此處撒網(wǎng)n次.

(1)當(dāng)n=3時(shí),求捕魚收益的期望值;

(2)試求n的值,使這次遠(yuǎn)洋捕魚收益的期望值達(dá)到最大.

查看答案和解析>>

已知冪函數(shù)滿足。

(1)求實(shí)數(shù)k的值,并寫出相應(yīng)的函數(shù)的解析式;

(2)對(duì)于(1)中的函數(shù),試判斷是否存在正數(shù)m,使函數(shù),在區(qū)間上的最大值為5。若存在,求出m的值;若不存在,請(qǐng)說明理由。

【解析】本試題主要考查了函數(shù)的解析式的求解和函數(shù)的最值的運(yùn)用。第一問中利用,冪函數(shù)滿足,得到

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159381726566489_ST.files/image007.png">,所以k=0,或k=1,故解析式為

(2)由(1)知,,,因此拋物線開口向下,對(duì)稱軸方程為:,結(jié)合二次函數(shù)的對(duì)稱軸,和開口求解最大值為5.,得到

(1)對(duì)于冪函數(shù)滿足,

因此,解得,………………3分

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921574878204718/SYS201206192159381726566489_ST.files/image007.png">,所以k=0,或k=1,當(dāng)k=0時(shí),,

當(dāng)k=1時(shí),,綜上所述,k的值為0或1,!6分

(2)函數(shù),………………7分

由此要求,因此拋物線開口向下,對(duì)稱軸方程為:,

當(dāng)時(shí),,因?yàn)樵趨^(qū)間上的最大值為5,

所以,或…………………………………………10分

解得滿足題意

 

查看答案和解析>>

某遠(yuǎn)洋捕漁船到遠(yuǎn)海捕魚,由于遠(yuǎn)海漁業(yè)資源豐富,每撒一次網(wǎng)都有w萬元的收益;同時(shí),又由于遠(yuǎn)海風(fēng)云未測(cè),每撒一次網(wǎng)存在遭遇沉船事故的可能,其概率為
1k
(常數(shù)k為大于l的正整數(shù)).假定,捕魚船噸位很大,可以裝下幾次撒網(wǎng)所捕的魚,而在每次撒網(wǎng)時(shí),發(fā)生不發(fā)生沉船事故與前一次撒網(wǎng)無關(guān),若發(fā)生沉船事故,則原來所獲的收益將隨船的沉沒而不存在,又已知船長(zhǎng)計(jì)劃在此處撒網(wǎng)n次.
(1)當(dāng)n=3時(shí),求捕魚收益的期望值
(2)試求n的值,使這次遠(yuǎn)洋捕魚收益的期望值達(dá)到最大.

查看答案和解析>>


同步練習(xí)冊(cè)答案