題目列表(包括答案和解析)
(本小題滿分12分)
甲、乙兩人下中國象棋,乙每局獲勝的概率為.
若甲、乙比賽3局,求乙恰勝2局的概率.
若甲、乙比賽,甲每局獲勝的概率為,和局的概率為.每局勝者得2分,負(fù)者得0分,和局則各得1分,規(guī)定積分先達(dá)到4分或4分以上者獲獎并終止比賽(若兩人同時達(dá)到4分,則兩人都不獲獎),求甲恰好在第3局比賽結(jié)束時獲獎的概率.
已知點(),過點作拋物線的切線,切點分別為、(其中).
(Ⅰ)若,求與的值;
(Ⅱ)在(Ⅰ)的條件下,若以點為圓心的圓與直線相切,求圓的方程;
(Ⅲ)若直線的方程是,且以點為圓心的圓與直線相切,
求圓面積的最小值.
【解析】本試題主要考查了拋物線的的方程以及性質(zhì)的運用。直線與圓的位置關(guān)系的運用。
中∵直線與曲線相切,且過點,∴,利用求根公式得到結(jié)論先求直線的方程,再利用點P到直線的距離為半徑,從而得到圓的方程。
(3)∵直線的方程是,,且以點為圓心的圓與直線相切∴點到直線的距離即為圓的半徑,即,借助于函數(shù)的性質(zhì)圓面積的最小值
(Ⅰ)由可得,. ------1分
∵直線與曲線相切,且過點,∴,即,
∴,或, --------------------3分
同理可得:,或----------------4分
∵,∴,. -----------------5分
(Ⅱ)由(Ⅰ)知,,,則的斜率,
∴直線的方程為:,又,
∴,即. -----------------7分
∵點到直線的距離即為圓的半徑,即,--------------8分
故圓的面積為. --------------------9分
(Ⅲ)∵直線的方程是,,且以點為圓心的圓與直線相切∴點到直線的距離即為圓的半徑,即, ………10分
∴
,
當(dāng)且僅當(dāng),即,時取等號.
故圓面積的最小值.
日需求量x | 240 | 250 | 260 | 270 | 280 | 290 | 300 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
某售報亭每天以每份0.4元的價格從報社購進(jìn)若干份報紙,然后以每份1元的價格出售,如果當(dāng)天賣不完,剩下的報紙以每份0.1元的價格賣給廢品收購站.
(Ⅰ)若售報亭一天購進(jìn)270份報紙,求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量(單位:份,)的函數(shù)解析式.
(Ⅱ)售報亭記錄了100天報紙的日需求量(單位:份),整理得下表:
日需求量 |
240 |
250 |
260 |
270 |
280 |
290 |
300 |
頻數(shù) |
10 |
20 |
16 |
16 |
15 |
13 |
10 |
以100天記錄的需求量的頻率作為各銷售量發(fā)生的概率.
(1)若售報亭一天購進(jìn)270份報紙,表示當(dāng)天的利潤(單位:元),求的數(shù)學(xué)期望;
(2)若售報亭計劃每天應(yīng)購進(jìn)270份或280份報紙,你認(rèn)為購進(jìn)270份報紙好,還是購進(jìn)280份報紙好? 說明理由.
日需求量x | 240 | 250 | 260 | 270 | 280 | 290 | 300 |
頻數(shù) | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com