查看更多

 

題目列表(包括答案和解析)


x 3 4 5 6
y 2.5 3 4 4.5
(1)請畫出上表數據的散點圖;
(2)請根據上表提供的數據,用最小二乘法求出y關于x的線性回歸方程y=
b
x+
a

(3)已知該廠技改前100噸甲產品的生產能耗為90噸標準煤.試根據(2)求出的線性回歸方程,預測生產100噸甲產品的生產能耗比技改前降低多少噸標準煤?(參考數值:3×2.5+4×3+5×4+6×4.5=66.5)

查看答案和解析>>

13、.對一批學生的抽樣成績的莖葉圖如下:則□表示的原始數據為
35

查看答案和解析>>

12、.若函數f(x)=x2+2(a-1)x+2在(-∞,4)上是減函數,則實數a的取值范圍是
a≤-3

查看答案和解析>>

.已知冪函數f(x)=xk2-2k-3(k∈N*)的圖象關于y軸對稱,且在區(qū)間(0,+∞)上是減函數,
(1)求函數f(x)的解析式;
(2)若a>k,比較(lna)0.7與(lna)0.6的大。

查看答案和解析>>

.在△ABC中,角A、B、C所對的邊分別為a、b、c,且c2=a2+b2-ab.
(Ⅰ)求角C;
(Ⅱ)設
m
=(sinA,1)
,
n
=(3,cos2A)
,試求
m
n
的最大值.

查看答案和解析>>

A.必做題部分

一、填空題:(本大題共14小題,每小題5分,共70分.)

1.  2. 3.共線 4.20 5. 6. 7.  8.2,5,10  9.16.4  10.1  11.7  12.  13.2   14.

二、解答題:

15.解:(1)

   

(2)   

余弦定理可得

又∵

16.證明  (1)∵PA⊥底面ABCD,∴AD是PD在平面ABCD內的射影,

∵CD平面ABCD且CD⊥AD,∴CD⊥PD 

(2)取CD中點G,連EG、FG,

∵E、F分別是AB、PC的中點,∴EG∥AD,FG∥PD

∴平面EFG∥平面PAD,故EF∥平面PAD

(3)解  當平面PCD與平面ABCD成45°角時,直線EF⊥面PCD

證明  G為CD中點,則EG⊥CD,由(1)知FG⊥CD,故∠EGF為平面PCD與平面ABCD所成二面角的平面角  即∠EGF=45°,從而得∠ADP=45°,AD=AP

由Rt△PAE≌Rt△CBE,得PE=CE

又F是PC的中點,∴EF⊥PC,由CD⊥EG,CD⊥FG,得CD⊥平面EFG,CD⊥EF即EF⊥CD,故EF⊥平面PCD

17.解:(1)依題意,距離等于到直線的距離,曲線是以原點為頂點,為焦點的拋物線                                                                                   

  曲線方程是                                                                

(2)設圓心,因為圓

故設圓的方程                                       

得:

設圓與軸的兩交點為,則 

在拋物線上,        

所以,當運動時,弦長為定值2                                                   

18.解(1)設日銷售量為

則日利潤

(2)

①當2≤a≤4時,33≤a+31≤35,當35 <x<41時,

∴當x=35時,L(x)取最大值為

②當4<a≤5時,35≤a+31≤36,

易知當x=a+31時,L(x)取最大值為綜合上得

19.解(1)據題意:

可行域如圖(暫缺)

的幾何意義是定點到區(qū)域內的點連線的斜率,

的取值范圍為

(2)當有零點時,,滿足條件為

由拋物線的下方與圍成的區(qū)域面積

由直線圍成的區(qū)域面積

有零點的概率

無零點的概率為

 

 (3)函數.

證明: 符合條件.

因為,

同理:;                                  

    所以, 符合條件.              

20.(1)解:由已知:對于,總有 ①成立

   (n ≥ 2)② 

①--②得

均為正數,∴   (n ≥ 2)

∴數列是公差為1的等差數列                又n=1時,, 解得=1

.()  

(2)證明:∵對任意實數和任意正整數n,總有.……6分

 

(3)解:由已知  ,      

         

        易得 

        猜想 n≥2 時,是遞減數列.

∵當

∴在為單調遞減函數.

.

∴n≥2 時, 是遞減數列.即是遞減數列.

, ∴數列中的最大項為

B.附加題部分

三、附加題部分:

21.(必做題)(本小題滿分12分)

解:(1)將代入,

        由△可知

        另一方面,弦長AB,解得;

(2)當時,直線為,要使得內接△ABC面積最大,

則只須使得

,即位于(4,4)點處.

 

22.(必做題)(本小題滿分12分)

解:(1)分別記甲、乙、丙三個同學筆試合格為事件、;

表示事件“恰有一人通過筆試”

           則

 

   (2)解法一:因為甲、乙、丙三個同學經過兩次考試后合格的概率均為,

所以,故

解法二:分別記甲、乙、丙三個同學經過兩次考試后合格為事件,

所以,

,

于是,

 

23.(選做題)(本小題滿分8分)

證明:(1)過D點作DG∥BC,并交AF于G點,

      ∵E是BD的中點,∴BE=DE,

      又∵∠EBF=∠EDG,∠BEF=∠DEG,

      ∴△BEF≌△DEG,則BF=DG,

      ∴BF:FC=DG:FC,

      又∵D是AC的中點,則DG:FC=1:2,

      則BF:FC=1:2;

        (2)若△BEF以BF為底,△BDC以BC為底,

            則由(1)知BF:BC=1:3,

           又由BE:BD=1:2可知=1:2,其中分別為△BEF和△BDC的高,

,則=1:5.

 

 

 

 

 

 

 

 

24.(選做題)(本小題滿分8分)

解:(1)消去參數,得直線的普通方程為;-----------------------2分

,

兩邊同乘以

消去參數,得⊙的直角坐標方程為:

 

(2)圓心到直線的距離,

所以直線和⊙相交.

 

25.(選做題)(本小題滿分8分)

解:MN = =,

    即在矩陣MN變換下

,

即曲線在矩陣MN變換下的函數解析式為

 

 

26.(選做題)(本小題滿分8分)

證明:(1)當時,左邊=,時成立 

(2)假設當時成立,即

那么當時,左邊

時也成立                  

根據(1)(2)可得不等式對所有的都成立     

 

 

 

 


同步練習冊答案