題目列表(包括答案和解析)
(本小題滿分14分)
已知函數(shù)。
(1)證明:
(2)若數(shù)列的通項(xiàng)公式為,求數(shù)列 的前項(xiàng)和;w.w.w.k.s.5.u.c.o.m
(3)設(shè)數(shù)列滿足:,設(shè),
若(2)中的滿足對(duì)任意不小于2的正整數(shù),恒成立,
試求的最大值。
(本小題滿分14分)已知,點(diǎn)在軸上,點(diǎn)在軸的正半軸,點(diǎn)在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m
(Ⅰ)當(dāng)點(diǎn)在軸上移動(dòng)時(shí),求動(dòng)點(diǎn)的軌跡方程;
(Ⅱ)過(guò)的直線與軌跡交于、兩點(diǎn),又過(guò)、作軌跡的切線、,當(dāng),求直線的方程.(本小題滿分14分)設(shè)函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m
(3)若關(guān)于的方程在區(qū)間上恰好有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍。(本小題滿分14分)
已知,其中是自然常數(shù),
(1)討論時(shí), 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m
(2)求證:在(1)的條件下,;
(3)是否存在實(shí)數(shù),使的最小值是3,若存在,求出的值;若不存在,說(shuō)明理由.
(本小題滿分14分)
設(shè)數(shù)列的前項(xiàng)和為,對(duì)任意的正整數(shù),都有成立,記。
(I)求數(shù)列的通項(xiàng)公式;
(II)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對(duì)任意正整數(shù)都有;
(III)設(shè)數(shù)列的前項(xiàng)和為。已知正實(shí)數(shù)滿足:對(duì)任意正整數(shù)恒成立,求的最小值。
一.選擇題:AACBD DCDAD
解析:1:可以判定對(duì)應(yīng)法則是從A到C的函數(shù)(,且是該函數(shù)的值域),于是對(duì)于實(shí)數(shù),在集合A中不存在原象,則的取值范圍構(gòu)成集合,注意到,故,.
從而答案為A.
2: 前三年年產(chǎn)量的增長(zhǎng)速度越來(lái)越快,總產(chǎn)量C與時(shí)間t(年)的函數(shù)關(guān)系,在圖上反映出來(lái),當(dāng)時(shí)是選項(xiàng)A、C中的形狀;又后三年年產(chǎn)量保持不變,總產(chǎn)量C與時(shí)間t(年)的函數(shù)關(guān)系應(yīng)如選項(xiàng)A所示,于是選A.
3: 利用圖象法求之.其中F(x)= 于是選C
4:由題意得, 于是 于是選B
5:⑴靜放在點(diǎn)的小球(小球的半徑不計(jì))從點(diǎn)沿直線出發(fā),經(jīng)橢圓壁右頂點(diǎn)反彈后第一次回到點(diǎn)時(shí),小球經(jīng)過(guò)的路程是,則選B;
⑵靜放在點(diǎn)的小球(小球的半徑不計(jì))從點(diǎn)沿直線出發(fā),經(jīng)橢圓壁左頂點(diǎn)反彈后第一次回到點(diǎn)時(shí),小球經(jīng)過(guò)的路程是,則選C;
⑶靜放在點(diǎn)的小球(小球的半徑不計(jì))從點(diǎn)沿直線出發(fā),經(jīng)橢圓壁非左右頂點(diǎn)反彈后第一次回到點(diǎn)時(shí),小球經(jīng)過(guò)的路程是,則選A。
于是三種情況均有可能,故選D。
6:用條件代入計(jì)算,不難得到結(jié)論為D.
7:解法一 因ysinx+cosx=2,故.
由,得 ,于是. 因0<x<π,故y>0.又當(dāng)時(shí),.若x=,有,故ymin=,選C.
解法二 由已知得:ysinx = 2 - cosx,于是y2(1-cos2x) = (2-cosx)2.
將上式整理得:(y2+1)cos2x-4cosx+4-y2=0.于是,ㄓ=16-4(y2+1)(4-y2)=4y2(y2-3)≥0.
因0<x<π,故y>0,于是y≥,而當(dāng)y=時(shí),ㄓ=0,cosx=,x=滿足題設(shè),于是ymin=,選C.
解法三 設(shè),則,當(dāng)且僅當(dāng)
,即,亦即x=時(shí),取“=”,故ymin=,選C.
解法四 如圖,單位圓中,∠MOt = ,P(2,0),M(cosx,sinx),.
因,故∠AOP=,∠APt =,
,從而,(kPM)min=.
8:由于函數(shù)的圖像關(guān)于原點(diǎn)中心對(duì)稱,則
為奇函數(shù),于是,,從而,,當(dāng),驗(yàn)正之選D.
9:集合A的子集為共8個(gè),
集合A的一個(gè)分拆可以列表如下:
A1
A2
A1
A2
,
,,
,
,,,,,
共有27個(gè),選A.
10:從10個(gè)不同的點(diǎn)中任取4個(gè)點(diǎn)的不同取法共有=210種,它可分為兩類:4點(diǎn)共面與不共面.
如圖1,4點(diǎn)共面的情形有三種:
①取出的4點(diǎn)在四面體的一個(gè)面內(nèi)(如圖中的AHGC在面ACD內(nèi)),這樣的取法有種;
②取出的4面所在的平面與四面體的一組對(duì)棱平行(如圖中的EFGH與AC、BD平行),這種取法有3種(因?yàn)閷?duì)棱共3組,即AC與BD、BC與AD、AB與CD);
③取出的4點(diǎn)是一條棱上的三點(diǎn)及對(duì)棱中點(diǎn)(如圖中的AEBG),這樣的取法共6種.
綜上所述,取出4個(gè)不共面的點(diǎn)的不同取法的種數(shù)為-(+3+6)=141種.
故所求的概率為,答案選D.
二.填空題:11、91萬(wàn)元; 12、; 13、②⑦④; ②④⑦; ④②⑦; ⑤②④; ⑤④②; ④⑤②. 14、:y2=x; 15、;
解析:
11:不少于1萬(wàn)元的占700萬(wàn)元的21%, 為700×21%=147萬(wàn)元.
1萬(wàn)元以上的保單中,超過(guò)或等于2.5萬(wàn)元的保單占,
金額為×147=91萬(wàn)元,故不少于2.5萬(wàn)元的保險(xiǎn)單有91萬(wàn)元。
12:原不等式可化為:(1),即;
(2)解得;(3)即, 綜上得:
13:根據(jù)三角函數(shù)的圖像的變換情況,不難得出下列6種變換:
②⑦④; ②④⑦; ④②⑦; ⑤②④; ⑤④②; ④⑤②.
14:依題意有 ,即,消去參數(shù),可得:y2=x
15:連結(jié)AD、DE,則AD=DE, ,又,
,,即=,即,
三.解答題:
16.解:(1) ………………2分
……………………………………6分
(2)
①當(dāng)時(shí),當(dāng)縣僅當(dāng)時(shí),取得最小值-1,這與已知矛盾;…8分
②當(dāng)時(shí),取得最小值,由已知得
;……………………………………………………………10分
③當(dāng)時(shí),取得最小值,由已知得
解得,這與相矛盾,綜上所述,為所求。……………………12分
17、解:(1)記“拋擲1枚硬幣1次出現(xiàn)正面向上”為事件A,P(A)=,拋擲15枚硬幣1次相當(dāng)于作15次獨(dú)立重復(fù)試驗(yàn),根據(jù)次獨(dú)立重復(fù)試驗(yàn)中事件A發(fā)生K次的概率公式,記至多有一枚正面向上的概率為P1
則P1= P15(0)+ P15(1)=+= ……………6分
(2)記正面向上為奇數(shù)枚的概率為P2,則有
P2= P15(1)+ P15(3)+…+ P15(15)=++…+
=+…+)? ………………………10分
又“出現(xiàn)正面向上為奇數(shù)枚”的事件與“出現(xiàn)正面向上為偶數(shù)枚”的事件是對(duì)立事件,記“出現(xiàn)正面向上為偶數(shù)枚”的事件的概率為P3
P3=1?=
出現(xiàn)正面向上為奇數(shù)枚的概率與出現(xiàn)正面向上為偶數(shù)枚的概率相等 ………12分
18、解:(Ⅰ); ……2分
(Ⅱ)性質(zhì)①、②均可推廣,推廣的形式分別是:
①, ② ……4分
事實(shí)上,在①中,當(dāng)時(shí),左邊, 右邊,等式成立;
當(dāng)時(shí),左邊
, 因此,①成立; ……6分
在②中,當(dāng)時(shí),左邊右邊,等式成立;
當(dāng)時(shí),
左邊
右邊,
因此 ②成立。 ……8分
(Ⅲ)先求導(dǎo)數(shù),得.
令>0,解得x<或 x>.
因此,當(dāng)時(shí),函數(shù)為增函數(shù), ……11分
當(dāng)時(shí),函數(shù)也為增函數(shù)。
令<0,解得<x<.
因此,當(dāng)時(shí),函數(shù)為減函數(shù). ……13分
所以,函數(shù)的增區(qū)間為,
函數(shù)的減區(qū)間為 ……14分
19、解:(Ⅰ)如圖所示:
C(2,0,0),S(0,0,1),O(0,0,0),B(1,1,0)
………………………………………………………5分
(Ⅱ)①
……………………………………………………………………………8分
②,
,
③; ……………………………………14分
20、解:(1)依題意,⊙的半徑,
⊙與⊙彼此外切,
…………………………………2分
兩邊平方,化簡(jiǎn)得 ,
即 , …………………………………4分
,
, ∴ 數(shù)列是等差數(shù)列. …………………7分
(2) 由題設(shè),,∴,即,
,
…………………………………9分
= ………………12分
=
. …………………………………14分
21:(Ⅰ)證明:由題意設(shè)
由得,則 所以
因此直線MA的方程為
直線MB的方程為…………………2分
所以① ②
由①、②得 因此 ,即
所以A、M、B三點(diǎn)的橫坐標(biāo)成等差數(shù)列. …………………4分
(Ⅱ)解:由(Ⅰ)知,當(dāng)x0=2時(shí), 將其代入①、②并整理得:
所以 x1、x2是方程的兩根,
因此 又
所以 …………………6分
由弦長(zhǎng)公式得
又, 所以p=1或p=2,
因此所求拋物線方程為或…………………8分
(Ⅲ)解:設(shè)D(x3,y3),由題意得C(x1+ x2, y1+ y2),
則CD的中點(diǎn)坐標(biāo)為
設(shè)直線AB的方程為
由點(diǎn)Q在直線AB上,并注意到點(diǎn)也在直線AB上,
代入得
若D(x3,y3)在拋物線上,則
因此 x3=0或x3=2x0.
即D(0,0)或 …………………10分
(1)當(dāng)x0=0時(shí),則,此時(shí),點(diǎn)M(0,-2p)適合題意. ………………11分
(2)當(dāng),對(duì)于D(0,0),此時(shí)
又AB⊥CD, 所以………………12分
即矛盾.
對(duì)于因?yàn)?sub>此時(shí)直線CD平行于y軸,
又
所以 直線AB與直線CD不垂直,與題設(shè)矛盾,
所以時(shí),不存在符合題意的M點(diǎn).
綜上所述,僅存在一點(diǎn)M(0,-2p)適合題意. ………………………………14分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com