14.設(shè)函數(shù)內(nèi)有定義.則下列函數(shù) 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)f(x)對其定義域內(nèi)的任意實(shí)數(shù),則稱函數(shù)f(x)為上凸函數(shù).現(xiàn)有下列命題:
①f(x)=sinx,x∈[0,π]是上凸函數(shù);
②f(x)=lnx(x>0)是上凸函數(shù);
③二次函數(shù)f(x)=ax2+bx+c(a≠0)是上凸函數(shù)的充要條件是a>0;
④f(x)是上凸函數(shù),若A(x1,f(x1)),B(x2,f(x2))是f(x)圖象上任意兩點(diǎn),點(diǎn)C在線段AB上,且;
其中,正確命題的序號是    (寫出所有你認(rèn)為正確命題的序號).

查看答案和解析>>

下列命題中正確命題的序號是
①②③⑤
①②③⑤

①若A={x|x>0},B=R,則f:x→y=x2是A到B的映射;
②設(shè)函數(shù)f (x) 對任意實(shí)數(shù)x、y都有f (x+y)=f (x)•f (y),且f (1)≠0,則f (0)=1;
③既是奇函數(shù),又是偶函數(shù)的函數(shù)有無窮多個;
④f (x)是R上的偶函數(shù),則f (x)•f (-x)>0;
⑤存在常數(shù)M對函數(shù)y=f (x)的定義域內(nèi)任意x都有f (x)≤M,則M是y=f (x)的最大值.

查看答案和解析>>

下列命題中正確命題的序號是   
①若A={x|x>0},B=R,則f:x→y=x2是A到B的映射;
②設(shè)函數(shù)f (x) 對任意實(shí)數(shù)x、y都有f (x+y)=f (x)•f (y),且f (1)≠0,則f (0)=1;
③既是奇函數(shù),又是偶函數(shù)的函數(shù)有無窮多個;
④f (x)是R上的偶函數(shù),則f (x)•f (-x)>0;
⑤存在常數(shù)M對函數(shù)y=f (x)的定義域內(nèi)任意x都有f (x)≤M,則M是y=f (x)的最大值.

查看答案和解析>>

下列命題中正確命題的序號是________.
①若A={x|x>0},B=R,則f:x→y=x2是A到B的映射;
②設(shè)函數(shù)f (x) 對任意實(shí)數(shù)x、y都有f (x+y)=f (x)•f (y),且f (1)≠0,則f (0)=1;
③既是奇函數(shù),又是偶函數(shù)的函數(shù)有無窮多個;
④f (x)是R上的偶函數(shù),則f (x)•f (-x)>0;
⑤存在常數(shù)M對函數(shù)y=f (x)的定義域內(nèi)任意x都有f (x)≤M,則M是y=f (x)的最大值.

查看答案和解析>>

給出下列幾個命題:
①若函數(shù)f(x)的定義域?yàn)镽,則g(x)=f(x)+f(-x)一定是偶函數(shù);
②若函數(shù)f(x)是定義域?yàn)镽的奇函數(shù),對于任意的x∈R都有f(x)+f(2-x)=0,則函數(shù)f(x)的圖象關(guān)于直線x=1對稱;
③已知x1,x2是函數(shù)f(x)定義域內(nèi)的兩個值,當(dāng)x1<x2時,f(x1)>f(x2),則f(x)是減函數(shù);
④設(shè)函數(shù)y=
1-x
+
x+3
的最大值和最小值分別為M和m,則M=
2
m
;
⑤若f(x)是定義域?yàn)镽的奇函數(shù),且f(x+2)也為奇函數(shù),則f(x)是以4為周期的周期函數(shù).
其中正確的命題序號是
①④⑤
①④⑤
.(寫出所有正確命題的序號)

查看答案和解析>>

一、選擇題:

DDCBA  BBDDA

    <li id="ioisc"><tr id="ioisc"></tr></li>
        <kbd id="ioisc"></kbd>

        ycy

        11.0     12.(±1,0)    13.1    14.②④      15 706

        三、解答題:

        16.解:    2分

        (Ⅰ)                                                        4分

        (Ⅱ)由

        單調(diào)遞增區(qū)間為                    8分

        (Ⅲ)

                                  12分

        17.解:(Ⅰ)                        6分

        • 18.解:(Ⅰ)證明:∵PA⊥平面ABCD   ∴PA⊥BD

          ∵ABCD為正方形   ∴AC⊥BD

          ∴BD⊥平面PAC又BD在平面BPD內(nèi),

          ∴平面PAC⊥平面BPD      6分

          (Ⅱ)解法一:在平面BCP內(nèi)作BN⊥PC垂足為N,連DN,

          ∵Rt△PBC≌Rt△PDC,由BN⊥PC得DN⊥PC;

          ∴∠BND為二面角B―PC―D的平面角,

          在△BND中,BN=DN=,BD=

          ∴cos∠BND =                             12分

          解法二:以A為原點(diǎn),AB、AD、AP所在直線分別為x軸、y軸、z軸建立空間坐標(biāo)系如圖,在平面BCP內(nèi)作BN⊥PC垂足為N連DN,

          ∵Rt△PBC≌Rt△PDC,由BN⊥PC得DN⊥PC;

          ∴∠BND為二面角B―PC―D的平面角                                8分

          設(shè)

                                    10分

                     12分

          解法三:以A為原點(diǎn),AB、AD、AP所在直線分別為x軸、y軸、z軸建立如圖空間坐標(biāo)系,作AM⊥PB于M、AN⊥PD于N,易證AM⊥平面PBC,AN⊥平面PDC,

        • <del id="ioisc"><tfoot id="ioisc"></tfoot></del>
        •                             10分

          ∵二面角B―PC―D的平面角與∠MAN互補(bǔ)

          ∴二面角B―PC―D的余弦值為                                 12分

          19.解:(Ⅰ)

                    4分

          又∵當(dāng)n = 1時,上式也成立,             6分

          (Ⅱ)              8分

               ①

               ②

          ①-②得:

                                                       12分

          20.解:(Ⅰ)由MAB的中點(diǎn),

          設(shè)A、B兩點(diǎn)的坐標(biāo)分別為

          ,

          M點(diǎn)的坐標(biāo)為                                 4分

          M點(diǎn)的直線l上:

                                                            7分

          (Ⅱ)由(Ⅰ)知,不妨設(shè)橢圓的一個焦點(diǎn)坐標(biāo)為關(guān)于直線l

          上的對稱點(diǎn)為,

          則有                       10分

          由已知

          ,∴所求的橢圓的方程為                       12分

          21.解:(Ⅰ)∵函數(shù)f(x)圖象關(guān)于原點(diǎn)對稱,∴對任意實(shí)數(shù)x

          ,

                                      2分

                               4分

          (Ⅱ)當(dāng)時,圖象上不存在這樣的兩點(diǎn)使結(jié)論成立               5分

          假設(shè)圖象上存在兩點(diǎn),使得過此兩點(diǎn)處的切線互相垂直,則由

          ,知兩點(diǎn)處的切線斜率分別為:

          此與(*)相矛盾,故假設(shè)不成立                                   9分

          (Ⅲ)證明:,

          在[-1,1]上是減函數(shù),且

          ∴在[-1,1]上,時,

              14分


          同步練習(xí)冊答案
            <cite id="ioisc"></cite>
            <rt id="ioisc"></rt>