(Ⅲ)當(dāng)最小時(shí).求的值. 查看更多

 

題目列表(包括答案和解析)

(本小題滿(mǎn)分13分)在中,分別是角的對(duì)邊,且

(Ⅰ)求角的大;

(Ⅱ)當(dāng)時(shí),求面積的最大值,并判斷此時(shí)的形狀.

 

查看答案和解析>>

(本小題滿(mǎn)分13分)在中,分別是角的對(duì)邊,且
(Ⅰ)求角的大;
(Ⅱ)當(dāng)時(shí),求面積的最大值,并判斷此時(shí)的形狀.

查看答案和解析>>

求當(dāng)x≥a時(shí),f(x)的最小值.已知f(x)是定義在{x|x>0}上的增函數(shù),且
(Ⅰ)求f(1)的值;
(Ⅱ)若f(6)=1,解不等式

查看答案和解析>>

(本小題滿(mǎn)分13分)在中,分別是角的對(duì)邊,且
(Ⅰ)求角的大;
(Ⅱ)當(dāng)時(shí),求面積的最大值,并判斷此時(shí)的形狀.

查看答案和解析>>

已知

(1)求的值;

(2)當(dāng)x∈(-a,a](其中a∈(-1,1),且a為常數(shù))時(shí),f(x)是否存在最小值,如果存在,求出最小值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

一、             

二、11.210      12.         13.2    14.         15.

三.解答題:

16. 解:(1)

……………………………………………………………3分

由題意得周期,故…………………………………………4分

又圖象過(guò)點(diǎn),所以

,而,所以

……………………………………………………6分

(2)當(dāng)時(shí),

∴當(dāng)時(shí),即時(shí),是減函數(shù)

當(dāng)時(shí),即時(shí),是增函數(shù)

∴函數(shù)的單調(diào)減區(qū)間是,單調(diào)增區(qū)間是………………12分

17.解:記“甲回答對(duì)這道題”、“ 乙回答對(duì)這道題”、“丙回答對(duì)這道題”分別為事件、、,則,且有,即

……………………………………………………………………6分

(2)由(1),.

則甲、乙、丙三人中恰有兩人回答對(duì)該題的概率為:

……………………12分

18. 解法一 公理化法

(1)當(dāng)時(shí),取的中點(diǎn),連接,因?yàn)?sub>為正三角形,則,由于的中點(diǎn)時(shí),

平面,∴平面,∴.………………………………………………4分

(2)當(dāng)時(shí),過(guò),如圖所示,則底面,過(guò),連結(jié),則,為二面角的平面角,

,

,

,即二面角的大小為.…………………………………………………8分

(3)設(shè)到面的距離為,則,平面,

即為點(diǎn)到平面的距離,

,

解得,

到平面的距離為.…………………………………………………………………………12分

解法二 向量法

為原點(diǎn),軸,過(guò)點(diǎn)與垂直的直線為軸,軸,建立空間直角坐標(biāo)系,如圖所示,

設(shè),則

(1)由,

,

………………………………4分

(2)當(dāng)時(shí),點(diǎn)的坐標(biāo)是

設(shè)平面的一個(gè)法向量,則

,則,

又平面的一個(gè)法向量為

又由于二面角是一個(gè)銳角,則二面角的大小是.……………………8分

(3)設(shè)到面的距離為,

到平面的距離為.………………………………………………………………………12分

19. 解:(Ⅰ)由于,

故在點(diǎn)處的切線方程是…………………………………………2分

,故表示同一條直線,

,,,.……6分

(Ⅱ) 由于,

,所以函數(shù)的單調(diào)區(qū)間是,…………………………8分

 

,

實(shí)數(shù)的取值范圍是.………………………………………………………12分

20. 解:(Ⅰ)設(shè)過(guò)與拋物線的相切的直線的斜率是,

則該切線的方程為:

都是方程的解,故………………………………………………4分

(Ⅱ)設(shè)

由于,故切線的方程是:,又由于點(diǎn)在上,則

,

,同理

則直線的方程是,則直線過(guò)定點(diǎn).………………………………………8分

(Ⅲ)要使最小,就是使得到直線的距離最小,

到直線的距離,當(dāng)且僅當(dāng)時(shí)取等號(hào).………………………………………………………………10分

設(shè)

,則

.…………13分

21. 解:(Ⅰ)由題意知……1分

 …………3分

檢驗(yàn)知時(shí),結(jié)論也成立

.………………………………………………………………………………4分

(Ⅱ) ①由于

………………………………………………9分

②若,其中,則有,則,

,

(其中表示不超過(guò)的最大整數(shù)),則當(dāng)時(shí),. ………………………………………………………14分

 

 

 


同步練習(xí)冊(cè)答案