16[解](Ⅰ) 查看更多

 

題目列表(包括答案和解析)

一段長為32米的籬笆圍成一個(gè)一邊靠墻的矩形菜園,墻長18米,問這個(gè)矩形的長、寬各為多少時(shí),菜園的面積最大,最大面積是多少?

【解析】解:令矩形與墻垂直的兩邊為寬并設(shè)矩形寬為,則長為

所以矩形的面積   ()     (4分=128    (8分)

當(dāng)且僅當(dāng)時(shí),即時(shí)等號成立,此時(shí)有最大值128

所以當(dāng)矩形的長為=16,寬為8時(shí),

菜園面積最大,最大面積為128 (13分)答:當(dāng)矩形的長為16米,寬為8米時(shí)。菜園面積最大,最大面積為128平方米(注:也可用二次函數(shù)模型解答)

 

查看答案和解析>>

改革開放以來,我國高等教育事業(yè)有了突飛猛進(jìn)的發(fā)展,有人記錄了某村年十年間每年考入大學(xué)的人數(shù).為方便計(jì)算,年編號為,年編號為,…,年編號為.?dāng)?shù)據(jù)如下:

年份(

10

人數(shù)(

11

13

14

17

22

30

31

(1)從這年中隨機(jī)抽取兩年,求考入大學(xué)的人數(shù)至少有年多于人的概率;

(2)根據(jù)前年的數(shù)據(jù),利用最小二乘法求出關(guān)于的回歸方程,并計(jì)算第年的估計(jì)值和實(shí)際值之間的差的絕對值。

 

【解析】(1)設(shè)考入大學(xué)人數(shù)至少有1年多于15人的事件為A則P(A)=1-=      (4’)

(2)由已知數(shù)據(jù)得=3,=8,=3+10+24+44+65=146=1+4+9+16+25=55(7’)

=,                   (9’)

 則回歸直線方程為y=2.6x+0.2                           (10’)

則第8年的估計(jì)值和真實(shí)值之間的差的絕對值為

 

查看答案和解析>>

在甲、乙兩個(gè)盒子中分別裝有標(biāo)號為1、2、3、4的四個(gè)球,現(xiàn)從甲、乙兩個(gè)盒子中各取出1個(gè)球,每個(gè)小球被取出的可能性相等。

(1)求取出的兩個(gè)球上標(biāo)號為相鄰整數(shù)的概率;

(2)求取出的兩個(gè)球上標(biāo)號之和能被3整除的概率.

【解析】本試題主要考查了古典概型概率的求解。第一問中,基本事件數(shù)為共有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),

(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)

總數(shù)為16種.其中取出的兩個(gè)小球上標(biāo)號為相鄰整數(shù)的基本事件有:

(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6種利用古典概型可知,P=3 /8 ;

(2)其中取出的兩個(gè)小球上標(biāo)號之和能被3整除的基本事件有:

(1,2),(2,1),(2,4),(3,3),(4,2)共5種可得概率值5 /16 ;

解:甲、乙兩個(gè)盒子里各取出1個(gè)小球計(jì)為(X,Y)則基本事件

共有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),

(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)

總數(shù)為16種.

(1)其中取出的兩個(gè)小球上標(biāo)號為相鄰整數(shù)的基本事件有:

(1,2),(2,1),(2,3),(3,2),(3,4),(4,3)共6種

故取出的兩個(gè)小球上標(biāo)號為相鄰整數(shù)的概率P=3 /8 ;

(2)其中取出的兩個(gè)小球上標(biāo)號之和能被3整除的基本事件有:

(1,2),(2,1),(2,4),(3,3),(4,2)共5種

故取出的兩個(gè)小球上標(biāo)號之和能被3整除的概率為5 /16 ;

 

查看答案和解析>>

正方形ABCD的邊長為1,點(diǎn)E在邊AB上,點(diǎn)F在邊BC上,AE=BF=.動點(diǎn)P從E出發(fā)沿直線喜愛那個(gè)F運(yùn)動,每當(dāng)碰到正方形的方向的邊時(shí)反彈,反彈時(shí)反射等于入射角,當(dāng)點(diǎn)P第一次碰到E時(shí),P與正方形的邊碰撞的次數(shù)為

(A)16(B)14(C)12(D)10

【解析】結(jié)合已知中的點(diǎn)E,F的位置,進(jìn)行作圖,推理可知,在反射的過程中,直線是平行的,那么利用平行關(guān)系,作圖,可以得到回到EA點(diǎn)時(shí),需要碰撞14次即可.

 

查看答案和解析>>

某化工廠擬建一座平面圖形為矩形且面積為162平方米的三級污水處理池,池的深度一定(平面圖如圖所示).如果池四周圍墻建造單價(jià)為400元/米,中間兩道隔墻建造單價(jià)為248元/米,池底建造單價(jià)為80元/米2,水池所有墻的厚度忽略不計(jì),試設(shè)計(jì)污水處理池的長和寬,使總造價(jià)最低,并求出最低總造價(jià)。

【解析】本試題主要考查導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。首先設(shè)變量

設(shè)寬為則長為,依題意,總造價(jià)

      

  當(dāng)且僅當(dāng)取等號

(元)得到結(jié)論。

設(shè)寬為則長為,依題意,總造價(jià)

     ………6分

  當(dāng)且僅當(dāng)取等號

(元)……………………10分

故當(dāng)處理池寬為10米,長為16.2米時(shí)能使總造價(jià)最低,且最低總造價(jià)為38880元

 

查看答案和解析>>


同步練習(xí)冊答案