所以函數(shù)的遞增區(qū)間是,,遞減區(qū)間是, 查看更多

 

題目列表(包括答案和解析)

已知函數(shù),.

(Ⅰ)若函數(shù)依次在處取到極值.求的取值范圍;

(Ⅱ)若存在實數(shù),使對任意的,不等式 恒成立.求正整數(shù)的最大值.

【解析】第一問中利用導數(shù)在在處取到極值點可知導數(shù)為零可以解得方程有三個不同的實數(shù)根來分析求解。

第二問中,利用存在實數(shù),使對任意的,不等式 恒成立轉(zhuǎn)化為,恒成立,分離參數(shù)法求解得到范圍。

解:(1)

(2)不等式 ,即,即.

轉(zhuǎn)化為存在實數(shù),使對任意的,不等式恒成立.

即不等式上恒成立.

即不等式上恒成立.

,則.

,則,因為,有.

在區(qū)間上是減函數(shù)。又

故存在,使得.

時,有,當時,有.

從而在區(qū)間上遞增,在區(qū)間上遞減.

[來源:]

所以當時,恒有;當時,恒有;

故使命題成立的正整數(shù)m的最大值為5

 

查看答案和解析>>

已知函數(shù),(),

(1)若曲線與曲線在它們的交點(1,c)處具有公共切線,求a,b的值

(2)當時,若函數(shù)在區(qū)間[k,2]上的最大值為28,求k的取值范圍

【解析】(1) 

∵曲線與曲線在它們的交點(1,c)處具有公共切線

,

(2)當時,,,

,則,令,為單調(diào)遞增區(qū)間,為單調(diào)遞減區(qū)間,其中F(-3)=28為極大值,所以如果區(qū)間[k,2]最大值為28,即區(qū)間包含極大值點,所以

【考點定位】此題應該說是導數(shù)題目中較為常規(guī)的類型題目,考查的切線,單調(diào)性,極值以及最值問題都是課本中要求的重點內(nèi)容,也是學生掌握比較好的知識點,在題目中能夠發(fā)現(xiàn)F(-3)=28,和分析出區(qū)間[k,2]包含極大值點,比較重要

 

查看答案和解析>>

已知函數(shù).(

(1)若在區(qū)間上單調(diào)遞增,求實數(shù)的取值范圍;

(2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.

【解析】第一問中,首先利用在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進而得到范圍;第二問中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.然后求解得到。

解:(1)在區(qū)間上單調(diào)遞增,

在區(qū)間上恒成立.  …………3分

,而當時,,故. …………5分

所以.                 …………6分

(2)令,定義域為

在區(qū)間上,函數(shù)的圖象恒在曲線下方等價于在區(qū)間上恒成立.   

        …………9分

① 若,令,得極值點,,

,即時,在(,+∞)上有,此時在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;

,即時,同理可知,在區(qū)間上遞增,

,也不合題意;                     …………11分

② 若,則有,此時在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);

要使在此區(qū)間上恒成立,只須滿足

由此求得的范圍是.        …………13分

綜合①②可知,當時,函數(shù)的圖象恒在直線下方.

 

查看答案和解析>>

設函數(shù)

(1)當時,求曲線處的切線方程;

(2)當時,求的極大值和極小值;

(3)若函數(shù)在區(qū)間上是增函數(shù),求實數(shù)的取值范圍.

【解析】(1)中,先利用,表示出點的斜率值這樣可以得到切線方程。(2)中,當,再令,利用導數(shù)的正負確定單調(diào)性,進而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說明了在區(qū)間導數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。

解:(1)當……2分

   

為所求切線方程。………………4分

(2)當

………………6分

遞減,在(3,+)遞增

的極大值為…………8分

(3)

①若上單調(diào)遞增!酀M足要求!10分

②若

恒成立,

恒成立,即a>0……………11分

時,不合題意。綜上所述,實數(shù)的取值范圍是

 

查看答案和解析>>

(本小題滿分9分)以下是用二分法求方程的一個近似解(精確度為0.1)的不完整的過程,請補充完整。

區(qū)間

中點

符號

區(qū)間長度

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

解:設函數(shù),其圖象在上是連續(xù)不斷的,且上是單調(diào)遞______(增或減)。先求_______,______,____________。

所以在區(qū)間____________內(nèi)存在零點,再填上表:

下結(jié)論:_______________________________。

(可參考條件:,;符號填+、-)

 

查看答案和解析>>


同步練習冊答案