題目列表(包括答案和解析)
在棱長為的正方體
中,
是線段
的中點,
.
(1) 求證:^
;
(2) 求證://平面
;
(3) 求三棱錐的表面積.
【解析】本試題考查了線線垂直和線面平行的判定定理和表面積公式的運用。第一問中,利用,得到結論,第二問中,先判定
為平行四邊形,然后
,可知結論成立。
第三問中,是邊長為
的正三角形,其面積為
,
因為平面
,所以
,
所以是直角三角形,其面積為
,
同理的面積為
,
面積為
. 所以三棱錐
的表面積為
.
解: (1)證明:根據正方體的性質,
因為,
所以,又
,所以
,
,
所以^
.
………………4分
(2)證明:連接,因為
,
所以為平行四邊形,因此
,
由于是線段
的中點,所以
, …………6分
因為面
,
平面
,所以
∥平面
. ……………8分
(3)是邊長為
的正三角形,其面積為
,
因為平面
,所以
,
所以是直角三角形,其面積為
,
同理的面積為
,
……………………10分
面積為
. 所以三棱錐
的表面積為
如圖,三棱錐中,側面
底面
,
,且
,
.(Ⅰ)求證:
平面
;
(Ⅱ)若為側棱PB的中點,求直線AE與底面
所成角的正弦值.
【解析】第一問中,利用由知,
,
又AP=PC=2,所以AC=2,
又AB=4, BC=2,,所以
,所以
,即
,
又平面平面ABC,平面
平面ABC=AC,
平面ABC,
平面ACP,所以
第二問中結合取AC中點O,連接PO、OB,并取OB中點H,連接AH、EH,因為PA=PC,所以PO⊥AC,同(Ⅰ)易證
平面ABC,又EH//PO,所以EH平面
ABC ,
則為直線AE與底面ABC 所成角,
解
(Ⅰ) 證明:由用由知,
,
又AP=PC=2,所以AC=2,
又AB=4, BC=2,,所以
,所以
,即
,
又平面平面ABC,平面
平面ABC=AC,
平面ABC,
平面ACP,所以
………………………………………………6分
(Ⅱ)如圖, 取AC中點O,連接PO、OB,并取OB中點H,連接AH、EH,
因為PA=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,
又EH//PO,所以EH平面ABC ,
則為直線AE與底面ABC 所成角,
且………………………………………10分
又PO=1/2AC=,也所以有EH=1/2PO=
,
由(Ⅰ)已證平面PBC,所以
,即
,
故,
于是
所以直線AE與底面ABC 所成角的正弦值為
在中,滿足
,
是
邊上的一點.
(Ⅰ)若,求向量
與向量
夾角的正弦值;
(Ⅱ)若,
=m (m為正常數) 且
是
邊上的三等分點.,求
值;
(Ⅲ)若且
求
的最小值。
【解析】第一問中,利用向量的數量積設向量與向量
的夾角為
,則
令=
,得
,又
,則
為所求
第二問因為,
=m所以
,
(1)當時,則
=
(2)當時,則
=
第三問中,解:設,因為
,
;
所以即
于是
得
從而
運用三角函數求解。
(Ⅰ)解:設向量與向量
的夾角為
,則
令=
,得
,又
,則
為所求……………2分
(Ⅱ)解:因為,
=m所以
,
(1)當時,則
=
;-2分
(2)當時,則
=
;--2分
(Ⅲ)解:設,因為
,
;
所以即
于是
得
從而---2分
==
=…………………………………2分
令,
則
,則函數
,在
遞減,在
上遞增,所以
從而當
時,
在數學證明中,①假言推理、②三段論推理、③傳遞關系推理、④完全歸納推理,是經常使用的四種演繹推理,下面推理過程使用到上述推理規(guī)則中的( )如(右圖)
因為lAB,所以
又因為AB//CD,所以
所以
A. ①②③ B.②③④
C. ②③ D.①②③④
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com