函數(shù)在區(qū)間上有最小值-2.則實數(shù)a的值為 ( ) 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)在區(qū)間上有最小值,則實數(shù)的值為  ( )

    A. 2               B.                C. -2                D. 4

查看答案和解析>>

函數(shù)f(x)=3x-x3在區(qū)間(a2-12,a)上有最小值,則實數(shù)a的取值范圍是
(-1,2]
(-1,2]

查看答案和解析>>

若函數(shù)在給定區(qū)間M上存在正數(shù),使得對于任意,有,且,則稱為M上的級類增函數(shù).給出3個命題:

①函數(shù)上的3級類增函數(shù);

②函數(shù)上的1級類增函數(shù);

③若函數(shù)上的級類增函數(shù),

則實數(shù)的最小值為2.

以上命題中為真命題的是       .

查看答案和解析>>

函數(shù)y=x2+ax-1在區(qū)間[0,3]上有最小值-2,則實數(shù)a的值為

[  ]

A.2

B.

C.-2

D.4

查看答案和解析>>

設函數(shù)f(x)=lg(x2+ax-a-1),給出如下命題:
①函數(shù)f(x)必有最小值;
②若a=0時,則函數(shù)f(x)的值域是R;
③若a>0,且f(x)的定義域為[2,+∞),則函數(shù)f(x)有反函數(shù);
④若函數(shù)f(x)在區(qū)間[2,+∞)上單調遞增,則實數(shù)a的取值范圍是[-4,+∞).
其中正確的命題序號是
 
.(將你認為正確的命題序號都填上)

查看答案和解析>>

1.   2. 1  3. 4  4.  5. 1,  6.  90° 7. 13

8.   9.   10. 4  11. y=2x  12. 9

13. D  14. B  15. D  16. C

17. 解: (1)y=2sin(2x-),  3’     最小正周期T=    5’

(2) ……8’

∴函數(shù)y的值域為[-1,2]                           ……………10’

18. (1)解  如圖所示,在平面ABCD內(nèi),過CCPDE,交直線ADP,則∠ACP(或補角)為異面直線ACDE所成的角  

在△ACP中,

易得AC=a,CP=DE=a,AP=a

由余弦定理得cosACP=

ACDE所成角為arccos 

另法(向量法)  如圖建立坐標系,則

ACDE所成角為arccos 

 (2)解  ∵∠ADE=∠ADF,∴AD在平面BEDF內(nèi)的射影在∠EDF的平分線上  如下圖所示   

又∵BEDF為菱形,∴DB′為∠EDF的平分線,

故直線AD與平面BEDF所成的角為∠ADB

在Rt△BAD中,AD=a,AB′=a,BD=a

則cosADB′=

AD與平面BEDF所成的角是arccos 

另法(向量法) 

∵∠ADE=∠ADF,∴AD在平面BEDF內(nèi)的射影在∠EDF的平分線上  如下圖所示   

又∵BEDF為菱形,∴DB′為∠EDF的平分線,

故直線AD與平面BEDF所成的角為∠ADB′,

如圖建立坐標系,則

,

AD與平面BEDF所成的角是arccos 

19.  (1)解為等差數(shù)列,

     ……………………………………………………2分

解得 ……………………………4分

 ………………………………………………………………5分

 ……………………………………………………………6分

   (2) ………………………………………………6分

 …………8分

,知上單減,在上單增,

,

…………………………………………10分

∴當n = 5時,取最大值為 ………………12分

20. 解:(1)∵,∴,即,

,∴

   (2),  

  當,

時,

     當時,∵,∴這樣的不存在。

     當,即時,,這樣的不存在。

     綜上得, .

21. 解:(1)Q為PN的中點且GQ⊥PN

       GQ為PN的中垂線|PG|=|GN|                                        

              ∴|GN|+|GM|=|MP|=6,故G點的軌跡是以M、N為焦點的橢圓,其長半軸長,半焦距,∴短半軸長b=2,∴點G的軌跡方程是

   (2)因為,所以四邊形OASB為平行四邊形

       若存在l使得||=||,則四邊形OASB為矩形

       若l的斜率不存在,直線l的方程為x=2,由

       矛盾,故l的斜率存在.   

       設l的方程為

      

          ①

      

          ②                      

       把①、②代入

∴存在直線使得四邊形OASB的對角線相等.

 


同步練習冊答案