設(shè)是平面PCD的法向量. 查看更多

 

題目列表(包括答案和解析)

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)證明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長.

 

【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)證明:易得,于是,所以

(2) ,設(shè)平面PCD的法向量,

,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

所以二面角A-PC-D的正弦值為.

(3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)證明:由,可得,又由,,故.又,所以.

(2)如圖,作于點(diǎn)H,連接DH.由,,可得.

因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值為.

(3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

已知空間三點(diǎn)A(1,3,2),B(1,2,1),C(-1,2,3),則下列向量中是平面ABC的法向量的為( 。

查看答案和解析>>

在四面體ABCD中,AB=BC,CD=DA,E,F,G分別是CD,DA和AC的中點(diǎn),求證:是平面BGD的法向量.

查看答案和解析>>

已知空間三點(diǎn)A(1,3,2),B(1,2,1),C(-1,2,3),則下列向量中是平面ABC的法向量的為( )
A.(-1,-2,5)
B.(1,3,2)
C.(1,1,1)
D.(-1,1,-1)

查看答案和解析>>

AB為的直徑,C為上一點(diǎn),PA垂直于所在的平面,,下列命題中正確命題的序號為

是平面PAC的法向量;  ②的法向量;

是平面PBC的法向量;  ④是平面ADF的法向量                ( 。

A.②、         B.② ③        C.①、    D.③ ④

查看答案和解析>>


同步練習(xí)冊答案