(?)求證:曲線的任意一條弦均有伴隨切線.并且伴隨切線是唯一的, 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)
(Ⅰ)求函數(shù)的極值;
(Ⅱ)對(duì)于曲線上的不同兩點(diǎn),,如果存在曲線上的點(diǎn),且,使得曲線在點(diǎn)處的切線,則稱為弦的伴隨切線。特別地,當(dāng)時(shí),又稱的λ-伴隨切線。
(。┣笞C:曲線的任意一條弦均有伴隨切線,并且伴隨切線是唯一的;
(ⅱ)是否存在曲線C,使得曲線C的任意一條弦均有伴隨切線?若存在,給出一條這樣的曲線 ,并證明你的結(jié)論; 若不存在 ,說(shuō)明理由。

查看答案和解析>>

(本小題滿分15分)

已知函數(shù)

(Ⅰ)求函數(shù)的極值;

(Ⅱ)對(duì)于曲線上的不同兩點(diǎn),如果存在曲線上的點(diǎn),且,使得曲線在點(diǎn)處的切線,則稱為弦的伴隨切線。特別地,當(dāng),時(shí),又稱的λ——伴隨切線。

(。┣笞C:曲線的任意一條弦均有伴隨切線,并且伴隨切線是唯一的;

(ⅱ)是否存在曲線C,使得曲線C的任意一條弦均有伴隨切線?若存在,給出一條這樣的曲線 ,并證明你的結(jié)論; 若不存在 ,說(shuō)明理由。

 

查看答案和解析>>

(本小題滿分15分)
已知函數(shù)
(Ⅰ)求函數(shù)的極值;
(Ⅱ)對(duì)于曲線上的不同兩點(diǎn),如果存在曲線上的點(diǎn),且,使得曲線在點(diǎn)處的切線,則稱為弦的伴隨切線。特別地,當(dāng),時(shí),又稱的λ——伴隨切線。
(。┣笞C:曲線的任意一條弦均有伴隨切線,并且伴隨切線是唯一的;
(ⅱ)是否存在曲線C,使得曲線C的任意一條弦均有伴隨切線?若存在,給出一條這樣的曲線 ,并證明你的結(jié)論; 若不存在 ,說(shuō)明理由。

查看答案和解析>>

 已知函數(shù)

(I)求函數(shù)的極值;

    (II)對(duì)于曲線上的不同兩點(diǎn)P1(x1,y1),P2(x2,y2),如果存在曲線上的點(diǎn)Q(x0,y0),    且x1<x0<x2,使得曲線在點(diǎn)Q處的切線//P1P2,,則稱為弦P1P2,的伴隨切線。

特別地,當(dāng)x0 = x1 + (1-)x2 (0<<1)時(shí),又稱為弦P1P2,-伴隨切線。

(i)求證:曲線y=f(x)的任意一條弦均有伴隨切線,并且伴隨切線是唯一的;

(ii)是否存在曲線C,使得曲線C的任意一條弦均有-伴隨切線?若存在,給出一條這樣的曲線,并證明你的結(jié)論;若不存在,說(shuō)明理由。

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

已知函數(shù)f(x)=ax+lnx,a∈R
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)對(duì)于曲線上的不同兩點(diǎn)P1(x1,y1),P2(x2,y2),如果存在曲線上的點(diǎn)Q(x0,y0),且x1<x0<x2,使得曲線在點(diǎn)Q處的切線?∥P1P2,則稱?為弦P1P2的伴隨切線.特別地,當(dāng)x0=λx1+(1-λ)x2(0<λ<1)時(shí),又稱?為P1P2的λ-伴隨切線.
(。┣笞C:曲線y=f(x)的任意一條弦均有伴隨切線,并且伴隨切線是唯一的;
(ⅱ)是否存在曲線C,使得曲線C的任意一條弦均有
12
-
伴隨切線?若存在,給出一條這樣的曲線,并證明你的結(jié)論;若不存在,說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案