(3)求證:若.則不等式≥對于任意的恒成立. 2009屆高三數(shù)學(xué)第十次月考試卷答案1―5:B C D B D 6―10:A A C D B 11―12:B A 查看更多

 

題目列表(包括答案和解析)

已知函數(shù),

(Ⅰ)求在區(qū)間的最小值;
(Ⅱ)求證:若,則不等式對于任意的恒成立;

(Ⅲ)求證:若,則不等式對于任意恒成立。

查看答案和解析>>

(本小題滿分15分)
已知函數(shù),。
(Ⅰ)求在區(qū)間的最小值;
(Ⅱ)求證:若,則不等式對于任意的恒成立;
(Ⅲ)求證:若,則不等式對于任意恒成立。

查看答案和解析>>

(本小題滿分12分)已知函數(shù),.

  (1)求在區(qū)間的最小值; (2)求證:若,則不等式對于任意的恒成立; (3)求證:若,則不等式對于任意的恒成立.

查看答案和解析>>

(本小題滿分12分)已知函數(shù),.
(1)求在區(qū)間的最小值;(2)求證:若,則不等式對于任意的恒成立;(3)求證:若,則不等式對于任意的恒成立.

查看答案和解析>>

若定義在區(qū)間D上的函數(shù)對于區(qū)間D上的任意兩個值、總有以下不等式成立,則稱函數(shù)為區(qū)間D上的凸函數(shù) .

(1)證明:定義在R上的二次函數(shù)是凸函數(shù);

(2)設(shè),并且時,恒成立,求實數(shù)的取值范圍,并判斷函數(shù)能否成為上的凸函數(shù);

(3)定義在整數(shù)集Z上的函數(shù)滿足:①對任意的,;②,. 試求的解析式;并判斷所求的函數(shù)是不是R上的凸函數(shù)說明理由.

查看答案和解析>>


同步練習(xí)冊答案