∴Sn=2-(n+2)()n.------------------------12分 查看更多

 

題目列表(包括答案和解析)

17.(本小題滿分12分)

擲一枚硬幣,正、反兩面出現(xiàn)的概率都是0.5,把這枚硬幣反復(fù)擲8次,這8次中的第n次中,假若正面出現(xiàn),記an=1,若反面出現(xiàn),記an=-1,令Sn=a1+a2+…+an(1≤n≤8),在這種情況下,試求下面的概率:

(1)S2≠0且S8=2的概率;

(2)S4=0且S8=2的概率.

查看答案和解析>>

(本小題滿分12分)已知數(shù)列{an}滿足a1=1,an>0,Sn是數(shù)列{an}的前n項和,對任意n∈N,有2Sn=p(2+an-1)(p為常數(shù)).

(1)求p和a2,a3的值;

(2)求數(shù)列{an}的通項公式.

 

查看答案和解析>>

(本小題滿分12分)已知函數(shù)f(x)=x3x2-2.

(1)設(shè){an}是正數(shù)組成的數(shù)列,前n項和為Sn,其中a1=3.若點(anan+12-2an+1)(n∈N*)在函數(shù)yf′(x)的圖象上,求證:點(n,Sn)也在yf′(x)的圖象上;

(2)求函數(shù)f(x)在區(qū)間(a-1,a)內(nèi)的極值.

 

 

查看答案和解析>>

(本題滿分12分)已知數(shù)列{an}的前n項和為Sn,點(n,)在直線y=x+上.?dāng)?shù)列{bn}滿足bn+2-2bn+1+bn=0(n∈N*),b3=11,且其前9項和為153.

(1)求數(shù)列{an},{bn}的通項公式;

(2)設(shè)cn,數(shù)列{cn}的前n項和為Tn,求使不等式Tn對一切n∈N*都成立的最大正整數(shù)k的值.

 

查看答案和解析>>

(本題滿分12分)

已知數(shù)列{an}的前n項和為Sn,點(n,)在直線y=x+上.?dāng)?shù)列{bn}滿足bn+2-2bn+1+bn=0(n∈N*),b3=11,且其前9項和為153.

(1)求數(shù)列{an},{bn}的通項公式;

(2)設(shè)cn=,數(shù)列{cn}的前n項和為Tn,求使不等式Tn>對一切n∈N*都成立的最大正整數(shù)k的值.

 

查看答案和解析>>


同步練習(xí)冊答案