14. 解析:圓心坐標(biāo)為(0.1)到直線的距離為.圓的半徑為1, 查看更多

 

題目列表(包括答案和解析)

已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線相切.

(I)求橢圓的方程;

(II)若過點(diǎn)(2,0)的直線與橢圓相交于兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿足O為坐標(biāo)原點(diǎn)),當(dāng) 時(shí),求實(shí)數(shù)的取值范圍.

【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關(guān)系的運(yùn)用。

第一問中,利用

第二問中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中,可得k的范圍,然后利用向量的不等式,表示得到t的范圍。

解:(1)由題意知

 

查看答案和解析>>

設(shè)拋物線>0)的焦點(diǎn)為,準(zhǔn)線為,上一點(diǎn),已知以為圓心,為半徑的圓,兩點(diǎn).

(Ⅰ)若,的面積為,求的值及圓的方程;

 (Ⅱ)若,三點(diǎn)在同一條直線上,直線平行,且只有一個(gè)公共點(diǎn),求坐標(biāo)原點(diǎn)到,距離的比值.

【命題意圖】本題主要考查圓的方程、拋物線的定義、直線與拋物線的位置關(guān)系、點(diǎn)到直線距離公式、線線平行等基礎(chǔ)知識(shí),考查數(shù)形結(jié)合思想和運(yùn)算求解能力.

【解析】設(shè)準(zhǔn)線軸的焦點(diǎn)為E,圓F的半徑為,

則|FE|==,E是BD的中點(diǎn),

(Ⅰ) ∵,∴=,|BD|=

設(shè)A(,),根據(jù)拋物線定義得,|FA|=,

的面積為,∴===,解得=2,

∴F(0,1),  FA|=,  ∴圓F的方程為:;

(Ⅱ) 解析1∵,三點(diǎn)在同一條直線上, ∴是圓的直徑,,

由拋物線定義知,∴,∴的斜率為或-,

∴直線的方程為:,∴原點(diǎn)到直線的距離=,

設(shè)直線的方程為:,代入得,,

只有一個(gè)公共點(diǎn), ∴=,∴,

∴直線的方程為:,∴原點(diǎn)到直線的距離=,

∴坐標(biāo)原點(diǎn)到距離的比值為3.

解析2由對(duì)稱性設(shè),則

      點(diǎn)關(guān)于點(diǎn)對(duì)稱得:

     得:,直線

     切點(diǎn)

     直線

坐標(biāo)原點(diǎn)到距離的比值為

 

查看答案和解析>>


同步練習(xí)冊(cè)答案