(2)①當(dāng)時(shí).由(1)知函數(shù)在上單調(diào).無(wú)極值點(diǎn); -------5分 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=ln(1+ax),g(x)=x2-ax,其中a為實(shí)數(shù).
(Ⅰ)當(dāng)a=2時(shí),求函數(shù)y=f(x)+g(x)的極小值;
(Ⅱ)是否存在實(shí)數(shù)a,使得函數(shù)y=f(x)與函數(shù)y=g(x)在區(qū)間[1,+∞)上單調(diào)性相同?若存在,請(qǐng)求出實(shí)數(shù)a的取值范圍;若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)若對(duì)任意的實(shí)數(shù)a∈(1,2),總存在一個(gè)與a無(wú)關(guān)的實(shí)數(shù)x1,且x1∈[
1
2
,1]
,使得f(x1)+g(x1)>m-
1
5
a2
恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

 (注意:在試題卷上作答無(wú)效)

給出定義在(0,+∞)上的三個(gè)函數(shù):,,已知在x=1處取極值.

(1)確定函數(shù)的單調(diào)性;

(2)求證:當(dāng)時(shí),恒有成立;

(3)把函數(shù)的圖象向上平移6個(gè)單位得到函數(shù)的圖象,試確定函數(shù)的零點(diǎn)個(gè)數(shù),并說(shuō)明理由.

 

 

 

 

 

 

查看答案和解析>>

已知函數(shù)的圖象過(guò)坐標(biāo)原點(diǎn)O,且在點(diǎn)處的切線的斜率是.

(Ⅰ)求實(shí)數(shù)的值; 

(Ⅱ)求在區(qū)間上的最大值;

(Ⅲ)對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?說(shuō)明理由.

【解析】第一問(wèn)當(dāng)時(shí),,則

依題意得:,即    解得

第二問(wèn)當(dāng)時(shí),,令,結(jié)合導(dǎo)數(shù)和函數(shù)之間的關(guān)系得到單調(diào)性的判定,得到極值和最值

第三問(wèn)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點(diǎn)的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

若方程(*)無(wú)解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

(Ⅰ)當(dāng)時(shí),,則。

依題意得:,即    解得

(Ⅱ)由(Ⅰ)知,

①當(dāng)時(shí),,令

當(dāng)變化時(shí),的變化情況如下表:

0

0

+

0

單調(diào)遞減

極小值

單調(diào)遞增

極大值

單調(diào)遞減

,,!上的最大值為2.

②當(dāng)時(shí), .當(dāng)時(shí), ,最大值為0;

當(dāng)時(shí), 上單調(diào)遞增。∴最大值為。

綜上,當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為2;

當(dāng)時(shí),即時(shí),在區(qū)間上的最大值為

(Ⅲ)假設(shè)曲線上存在兩點(diǎn)P、Q滿足題設(shè)要求,則點(diǎn)P、Q只能在軸兩側(cè)。

不妨設(shè),則,顯然

是以O(shè)為直角頂點(diǎn)的直角三角形,∴

    (*)若方程(*)有解,存在滿足題設(shè)要求的兩點(diǎn)P、Q;

若方程(*)無(wú)解,不存在滿足題設(shè)要求的兩點(diǎn)P、Q.

,則代入(*)式得:

,而此方程無(wú)解,因此。此時(shí),

代入(*)式得:    即   (**)

 ,則

上單調(diào)遞增,  ∵     ∴,∴的取值范圍是。

∴對(duì)于,方程(**)總有解,即方程(*)總有解。

因此,對(duì)任意給定的正實(shí)數(shù),曲線上存在兩點(diǎn)P、Q,使得是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上

 

查看答案和解析>>


同步練習(xí)冊(cè)答案