(2)由.由正弦定理得. 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,PB⊥BC,PD⊥CD,且PA=2,E點(diǎn)滿(mǎn)足
PE
=
1
3
PD

(1)證明:PA⊥平面ABCD;
(2)求二面角E-AC-D的余弦值.
(3)在線(xiàn)段BC上是否存在點(diǎn)F,使得PF∥平面EAC?若存在,確定點(diǎn)F的位置,若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

如圖,在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,PB⊥BC,PD⊥CD,且PA=2,E點(diǎn)滿(mǎn)足數(shù)學(xué)公式
(1)證明:PA⊥平面ABCD;
(2)求二面角E-AC-D的余弦值.
(3)在線(xiàn)段BC上是否存在點(diǎn)F,使得PF∥平面EAC?若存在,確定點(diǎn)F的位置,若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

如圖,在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,PB⊥BC,PD⊥CD,且PA=2,E點(diǎn)滿(mǎn)足
PE
=
1
3
PD

(1)證明:PA⊥平面ABCD;
(2)求二面角E-AC-D的余弦值.
(3)在線(xiàn)段BC上是否存在點(diǎn)F,使得PF平面EAC?若存在,確定點(diǎn)F的位置,若不存在請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

如圖,在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,PB⊥BC,PD⊥CD,且PA=2,E點(diǎn)滿(mǎn)足
(1)證明:PA⊥平面ABCD;
(2)求二面角E-AC-D的余弦值.
(3)在線(xiàn)段BC上是否存在點(diǎn)F,使得PF∥平面EAC?若存在,確定點(diǎn)F的位置,若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

如圖,在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,PB⊥BC,PD⊥CD,且PA=2,E點(diǎn)滿(mǎn)足
(1)證明:PA⊥平面ABCD;
(2)求二面角E-AC-D的余弦值.
(3)在線(xiàn)段BC上是否存在點(diǎn)F,使得PF∥平面EAC?若存在,確定點(diǎn)F的位置,若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案